4 research outputs found

    A simple potentiometric biosensor based on carboxylesterase for the analysis of aspartame

    Get PDF
    A potentiometric aspartame biosensor was fabricated by simply depositing the carboxylesterase (CES)-bonded poly(n-butyl acrylate-n-acryloxysuccimide) [CES-poly(nBA-NAS)] microspheres on a Ag/AgCl screen-printed pH selective electrode. The pH transducer was made from non-plasticized polyacrylate membrane containing a hydrogen ionophore and lipophilic salt. The immobilized CES enzyme catalyzed the enzymatic hydrolysis of aspartame to L-aspartic acid (L-Asp), L-phenylalanine and methanol. Potentiometric determination of aspartame concentration was performed by quantifying the hydrogen ion concentration produced from L-Asp. The potentiometric determination of aspartame exhibited good selectivity with near Nernstian response. The sensitivity of the biosensor was closed to the Nernstian value, i.e., 50-52 mV decade-1 with a dynamic linear response range from 10-5 to 10-2 M and detection limit approaching 10-6 M. The aspartame biosensor demonstrated good repeatability and reproducibility with relative standard deviation (RSD) of 1.9% and 1.6%, respectively (n=3). The potentiometric aspartame biosensor was demonstrated to be reliable for determining aspartame content in sweetener samples and was comparable to the conventional high-performance liquid chromatography (HPLC) method for aspartame analysis

    An approach of zirconium oxide/polyethylene glycol nanocomposite film on screen printed carbon electrode and its application in glucose determination

    Get PDF
    An amperometric biosensor for the quantitative measurement of glucose is reported. The biosensor is based on a biocomposite that is homogeneous and easily prepared. This biocomposite is made of polyethylene glycol (PEG), Cetyl trimethylammonium bromide (CTAB), glucose oxidase (GOx), and zirconium oxide (ZrO2) nanoparticles. Effect of applied potential, pH, nanocomposite layer, ratio of zirconium oxide nanoparticles (ZrO2) to polyethylene glycol (PEG), concentration of ferrocenecarboxaldehyde (Fc) and concentration of enzyme that governed the analytical performance of the biosensor have been studied. The biosensor was applied to detect glucose with a linear calibration range from 0.1 mM to 12 mM and limit of detection 0.04 mM. The variation coefficient (RSD) for repeatability was 7.5% for ten successive assays while 6.01% (n = 5) for reproducibility test demonstrating that the biosensor fabrication process is reproducible. Common interfering compounds on the amperometric response of the sensor were investigated and discussed herein

    A simple and sensitive fluorescence based biosensor for the determination of uric acid using H2O2-sensitive quantum dots/dual enzymes

    Get PDF
    A novel optical detection system consisting of combination of uricase/HRP–CdS quantum dots (QDs) for the determination of uric acid in urine sample is described. The QDs was used as an indicator to reveal fluorescence property of the system resulting from enzymatic reaction of uricase and HRP (horseradish peroxidase), which is involved in oxidizing uric acid to allaintoin and hydrogen peroxide. The hydrogen peroxide produced was able to quench the QDs fluorescence, which was proportional to uric acid concentration. The system demonstrated sufficient activity of uricase and HRP at a ratio of 5U:5U and pH 7.0. The linearity of the system toward uric acid was in the concentration range of 125–1000 µM with detection limit of 125 µM

    Synthesis and surface modification of biocompatible water soluble core-shell quantum dots

    Get PDF
    In this study, the applications of CdSe/ZnS quantum dots (QDs) and its role in advanced sensings has been explored. The CdSe/ZnS was synthesized by using hot injection method with the shell ZnS layer was made using successive ionic layer adsorption and reaction (SILAR) method. The morphology of the CdSe/ZnS QDs was studied using Transmission Electron Microscope (TEM) and the average particle size was in 10-12 nm range. The prepared QDs were optically characterized using spectrofluorescence and strong emission was observed at 620 nm. Comparison of the fluorescence emissions of CdSe/ZnS capped with various capping ligands such as L-cysteine, thioglycolic acid (TGA), mercaptopropionic acid (MPA), mercaptosuccinic acid (MSA) and mercaptoundecanoic acid (MUA) were studied. The CdSe/ZnS capped with TGA gave the strongest fluorescence emission compared to others
    corecore