206 research outputs found

    CYLD mutation characterizes a subset of HPV-positive head and neck squamous cell carcinomas with distinctive genomics and frequent cylindroma-like histologic features

    Get PDF
    Mutations in the tumor suppressor CYLD, known to be causative of cylindromas, were recently described in a subset of high-risk (hr) HPV-positive head and neck squamous cell carcinomas (HNSCC). Pathologic and genetic characterization of these CYLD-mutant carcinomas, however, remains limited. Here, we investigated whether CYLD mutations characterize a histopathologically and genomically distinct subset of hrHPV-positive HNSCC. Comprehensive genomic profiling via hybrid capture-based DNA sequencing was performed on 703 consecutive head and neck carcinomas with hrHPV sequences, identifying 148 unique cases (21%) harboring CYLD mutations. Clinical data, pathology reports, and histopathology were reviewed. CYLD mutations included homozygous deletions (n = 61/148; 41%), truncations (n = 52; 35%), missense (n = 26; 18%) and splice-site (n = 9; 6%) mutations, and in-frame deletion (n = 1; 1%). Among hrHPV-positive HNSCC, the CYLD-mutant cohort showed substantially lower tumor mutational burden than CYLD-wildtype cases (n = 555) (median 2.6 vs. 4.4 mut/Mb, p \u3c 0.00001) and less frequent alterations in PIK3CA (11% vs. 34%, p \u3c 0.0001), KMT2D (1% vs. 16%, p \u3c 0.0001), and FBXW7 (3% vs. 11%, p = 0.0018). Male predominance (94% vs. 87%), median age (58 vs. 60 years), and detection of HPV16 (95% vs. 89%) were similar. On available histopathology, 70% of CYLD-mutant HNSCC (98/141 cases) contained hyalinized material, consistent with basement membrane inclusions, within crowded aggregates of tumor cells. Only 7% of CYLD-wildtype cases demonstrated this distinctive pattern (p \u3c 0.0001). Histopathologic patterns of CYLD-mutant HNSCC lacking basement membrane inclusions included nonkeratinizing (n = 22, 16%), predominantly nonkeratinizing (nonkeratinizing SCC with focal maturation; n = 10, 7%), and keratinizing (n = 11, 8%) patterns. The latter two groups showed significantly higher frequency of PTEN alterations compared with other CYLD-mutant cases (38% [8/21] vs. 7% [8/120], p = 0.0004). Within our cohort of hrHPV-positive HNSCCs, CYLD mutations were frequent (21%) and demonstrated distinctive clinical, histopathologic, and genomic features that may inform future study of prognosis and treatment

    Implementation of genomic surveillance of SARS-CoV-2 in the Caribbean: Lessons learned for sustainability in resource-limited settings

    Get PDF
    The COVID-19 pandemic highlighted the importance of global genomic surveillance to monitor the emergence and spread of SARS-CoV-2 variants and inform public health decision-making. Until December 2020 there was minimal capacity for viral genomic surveillance in most Caribbean countries. To overcome this constraint, the COVID-19: Infectious disease Molecular epidemiology for PAthogen Control & Tracking (COVID-19 IMPACT) project was implemented to establish rapid SARS-CoV-2 whole genome nanopore sequencing at The University of the West Indies (UWI) in Trinidad and Tobago (T&T) and provide needed SARS-CoV-2 sequencing services for T&T and other Caribbean Public Health Agency Member States (CMS). Using the Oxford Nanopore Technologies MinION sequencing platform and ARTIC network sequencing protocols and bioinformatics pipeline, a total of 3610 SARS-CoV-2 positive RNA samples, received from 17 CMS, were sequenced in-situ during the period December 5th 2020 to December 31st 2021. Ninety-one Pango lineages, including those of five variants of concern (VOC), were identified. Genetic analysis revealed at least 260 introductions to the CMS from other global regions. For each of the 17 CMS, the percentage of reported COVID-19 cases sequenced by the COVID-19 IMPACT laboratory ranged from 0·02% to 3·80% (median = 1·12%). Sequences submitted to GISAID by our study represented 73·3% of all SARS-CoV-2 sequences from the 17 CMS available on the database up to December 31st 2021. Increased staffing, process and infrastructural improvement over the course of the project helped reduce turnaround times for reporting to originating institutions and sequence uploads to GISAID. Insights from our genomic surveillance network in the Caribbean region directly influenced non-pharmaceutical countermeasures in the CMS countries. However, limited availability of associated surveillance and clinical data made it challenging to contextualise the observed SARS-CoV-2 diversity and evolution, highlighting the need for development of infrastructure for collecting and integrating genomic sequencing data and sample-associated metadata

    Live Cell Monitoring of hiPSC Generation and Differentiation Using Differential Expression of Endogenous microRNAs

    Get PDF
    Human induced pluripotent stem cells (hiPSCs) provide new possibilities for regenerative therapies. In order for this potential to be achieved, it is critical to efficiently monitor the differentiation of these hiPSCs into specific lineages. Here, we describe a lentiviral reporter vector sensitive to specific microRNAs (miRNA) to show that a single vector bearing multiple miRNA target sequences conjugated to different reporters can be used to monitor hiPSC formation and subsequent differentiation from human fetal fibroblasts (HFFs). The reporter vector encodes EGFP conjugated to the targets of human embryonic stem cell (hESC) specific miRNAs (miR-302a and miR-302d) and mCherry conjugated to the targets of differentiated cells specific miRNAs (miR-142-3p, miR-155, and miR-223). The vector was used to track reprogramming of HFF to iPSC. HFFs co-transduced with this reporter vector and vectors encoding 4 reprogramming factors (OCT4, SOX2, KLF4 and cMYC) were mostly positive for EGFP (67%) at an early stage of hiPSC formation. EGFP expression gradually disappeared and mCherry expression increased indicating less miRNAs specific to differentiated cells and expression of miRNAs specific to hESCs. Upon differentiation of the hiPSC into embryoid bodies, a large fraction of these hiPSCs regained EGFP expression and some of those cells became single positive for EGFP. Further differentiation into neural lineages showed distinct structures demarcated by either EGFP or mCherry expression. These findings demonstrate that a miRNA dependent reporter vector can be a useful tool to monitor living cells during reprogramming of hiPSC and subsequent differentiation to lineage specific cells

    Distinctive Patterns of MicroRNA Expression Associated with Karyotype in Acute Myeloid Leukaemia

    Get PDF
    Acute myeloid leukaemia (AML) is the most common acute leukaemia in adults; however, the genetic aetiology of the disease is not yet fully understood. A quantitative expression profile analysis of 157 mature miRNAs was performed on 100 AML patients representing the spectrum of known karyotypes common in AML. The principle observation reported here is that AMLs bearing a t(15;17) translocation had a distinctive signature throughout the whole set of genes, including the up regulation of a subset of miRNAs located in the human 14q32 imprinted domain. The set included miR-127, miR-154, miR-154*, miR-299, miR-323, miR-368, and miR-370. Furthermore, specific subsets of miRNAs were identified that provided molecular signatures characteristic of the major translocation-mediated gene fusion events in AML. Analysis of variance showed the significant deregulation of 33 miRNAs across the leukaemic set with respect to bone marrow from healthy donors. Fluorescent in situ hybridisation analysis using miRNA-specific locked nucleic acid (LNA) probes on cryopreserved patient cells confirmed the results obtained by real-time PCR. This study, conducted on about a fifth of the miRNAs currently reported in the Sanger database (microrna.sanger.ac.uk), demonstrates the potential for using miRNA expression to sub-classify cancer and suggests a role in the aetiology of leukaemia
    corecore