17 research outputs found

    Molecular and environmental cues in cardiac differentiation of mesenchymal stem cells

    Get PDF
    In this thesis molecular and environmental cues in cardiac differentiation of mesenchymal stem cells were investigated. The main conclusions were that the cardiac differentiation potential of human mesenchymal stem cells negatively correlates with donor age. This in its own shows a negative relationship with connexin 43 levels in these cells. However, a causal relationship between connexin 43 expression levels and cardiomyogenic differentiation potential only exists for human mesenchymal stem cells from prenatal sources, i.e. while knockdown of connexin 43 expression in fetal human mesenchymal stem cells inhibits their ability to differentiate into cardiomyocytes, connexin 43 overexpression in adult human mesenchymal stem cells does not endow them with cardiomyogenic differentiation capacity. In addition, co-culture studies showed that the alignment and distribution of mesenchymal stem cells affect their electrical integration into host myocardium and are major determinants of their pro-arrhythmic risk. The mechanisms underlying the pro-arrhythmic effects of hMSCs are to some extent comparable to those of cardiac myofibroblasts, cells that are found in fibrotic myocardiumUBL - phd migration 201

    Light transmittance in human atrial tissue and transthoracic illumination in rats support translatability of optogenetic cardioversion of atrial fibrillation

    Get PDF
    Background: Optogenetics could offer a solution to the current lack of an ambulatory method for the rapid automated cardioversion of atrial fibrillation (AF), but key translational aspects remain to be studied. Objective: To investigate whether optogenetic cardioversion of AF is effective in the aged heart and whether sufficient light penetrates the human atrial wall. Methods: Atria of adult and aged rats were optogenetically modified to express light-gated ion channels (i.e., red-activatable channelrhodopsin), followed by AF induction and atrial illumination to determine the effectivity of optogenetic cardioversion. The irradiance level was determined by light transmittance measurements on human atrial tissue. Results: AF could be effectively terminated in the remodeled atria of aged rats (97%, n = 6). Subsequently, ex vivo experiments using human atrial auricles demonstrated that 565-nm light pulses at an intensity of 25 mW/mm(2) achieved the complete penetration of the atrial wall. Applying such irradiation onto the chest of adult rats resulted in transthoracic atrial illumination as evidenced by the optogenetic cardioversion of AF (90%, n = 4). Conclusion: Transthoracic optogenetic cardioversion of AF is effective in the aged rat heart using irradiation levels compatible with human atrial transmural light penetration.Thoracic Surger

    Young at heart. An update on cardiac regeneration

    No full text
    Cardiovascular disease remains one of the most important causes of mortality. Over the past decades important advances have been made in prevention and treatment of acute complications after myocardial infarction (MI). As a result, the number of patients that acutely die from MI has been reduced. Current treatments can not prevent the loss of cardiac contractility caused by cardiomyocyte death, and therefore patients that do survive MI are prone to develop progressive impaired cardiac function, which may lead to heart failure. Cell-based therapy has been proposed as a potential new therapy to prevent progression to end-stage heart failure by (re) generating contractile tissue in the damaged heart. During the last years many different cell sources have been studied extensively for their cardiomyogenic differentiation capacity in vitro and in vitro. These cells include several populations of cardiac-derived progenitor cells as well as mesenchymal stem cells derived from different sources. It has become clear that not only the origin, but also the "age" of a cell is an important determinant of its plasticity. Therefore, special attention is paid to the difference in developmental state of the cell sources and the consequences for their differentiation capacity and therapeutic applicability. Furthermore, we provide future perspectives for several aspects of cell-based therapy that could be optimized in order to enhance the regeneration of the heart.Cardiac Dysfunction and Arrhythmia
    corecore