15 research outputs found

    The Secret Life of the Anthrax Agent Bacillus anthracis: Bacteriophage-Mediated Ecological Adaptations

    Get PDF
    Ecological and genetic factors that govern the occurrence and persistence of anthrax reservoirs in the environment are obscure. A central tenet, based on limited and often conflicting studies, has long held that growing or vegetative forms of Bacillus anthracis survive poorly outside the mammalian host and must sporulate to survive in the environment. Here, we present evidence of a more dynamic lifecycle, whereby interactions with bacterial viruses, or bacteriophages, elicit phenotypic alterations in B. anthracis and the emergence of infected derivatives, or lysogens, with dramatically altered survival capabilities. Using both laboratory and environmental B. anthracis strains, we show that lysogeny can block or promote sporulation depending on the phage, induce exopolysaccharide expression and biofilm formation, and enable the long-term colonization of both an artificial soil environment and the intestinal tract of the invertebrate redworm, Eisenia fetida. All of the B. anthracis lysogens existed in a pseudolysogenic-like state in both the soil and worm gut, shedding phages that could in turn infect non-lysogenic B. anthracis recipients and confer survival phenotypes in those environments. Finally, the mechanism behind several phenotypic changes was found to require phage-encoded bacterial sigma factors and the expression of at least one host-encoded protein predicted to be involved in the colonization of invertebrate intestines. The results here demonstrate that during its environmental phase, bacteriophages provide B. anthracis with alternatives to sporulation that involve the activation of soil-survival and endosymbiotic capabilities

    Contribution à l'étude de la diversité bactérienne dans l'environnement atmosphérique dans le cadre d'études de défense contre les armes biologiques.

    No full text
    Les armes biologiques constituent une menace qui est sérieusement prise en compte par les autorités civiles et militaires. Les acteurs dans ce domaine sont confrontés à trois difficultés au moins. Premièrement, bien que la liste des nombreux agents susceptibles de pouvoir être utilisés soit définie, nul ne sait à priori lequel de ces micro-organismes pathogènes serait utilisé lors d'une agression. Deuxièmement, face à un micro-organisme pathogène qui serait identifié dans un contexte de crise, il est impératif, pour des raisons politiques et/ou de santé publique, de fournir en quelques heures seulement les informations susceptibles d'identifier le micro-organisme au niveau de la souche. Enfin, les vecteurs potentiels d'une attaque bio terroriste par exemple, l'eau potable, la chaîne alimentaire, le courrier, l'atmosphère (en enceintes confinées ou non), ne font pas l'objet d'une surveillance microbiologique orientée vers les agents de la menace bio-terroriste. L'eau potable par exemple est l'objet de protocoles spécifiques de surveillance destinés à permettre une identification au niveau de l'espèce des principales bactéries pathogènes du tube digestif. L'environnement atmosphérique est susceptible de véhiculer diverses bactéries pathogènes par voie respiratoire et devrait idéalement pouvoir faire l'objet d'une surveillance par des systèmes ad hoc de détection et d'analyse biologique. Il existe actuellement relativement peu de données sur la composition microbiologique normale de l'atmosphère. Pourtant, la maîtrise des fausses alertes et le choix a priori de méthodes de détection dépendent largement de la connaissance de ce milieu de transit pour de nombreuses bactéries de l'environnement. Dans cette perspective, le premier volet de ce travail a consisté à dénombrer les micro-organismes totaux de quelques milliers d'échantillons issus d'un projet de collecte d'échantillons atmosphériques réalisé en 2001. Dans un deuxième volet, une méthode d'hybridation ADN-ADN inverse sur macroarray a été évaluée en mettant l'accent plus particulièrement sur le genre Burkholderia. Le profil d'hybridation d'un ADN inconnu marqué, observé à partir des différents ADN de référence déposés sur le support, permet une identification au niveau de l'espèce. Enfin, des outils permettant l'identification précise de souches de B. mallei et B. pseudomallei ont été mis au point et validés sur une vingtaine de souches. Ces outils sont d'une part une séquence d'insertion (IS) présente à différents endroits du génome de ces deux espèces, et d'autre part le typage de répétitions en tandem.LYON1-BU.Sciences (692662101) / SudocSudocFranceF

    Variable Number of Tandem Repeats in Salmonella enterica subsp. enterica for Typing Purposes

    No full text
    The genomic sequences of Salmonella enterica subsp. enterica strains CT18, Ty2 (serovar Typhi), and LT2 (serovar Typhimurium) were analyzed for potential variable number tandem repeats (VNTRs). A multiple-locus VNTR analysis (MLVA) of 99 strains of S. enterica supsp. enterica based on 10 VNTRs distinguished 52 genotypes and placed them into four groups. All strains tested were independent human isolates from France and did not reflect isolates from outbreak episodes. Of these 10 VNTRs, 7 showed variability within serovar Typhi, whereas 1 showed variability within serovar Typhimurium. Four VNTRs showed high Nei's diversity indices (DIs) of 0.81 to 0.87 within serovar Typhi (n = 27). Additionally, three of these more variable VNTRs showed DIs of 0.18 to 0.58 within serovar Paratyphi A (n = 10). The VNTR polymorphic site within multidrug-resistant (MDR) serovar Typhimurium isolates (n = 39; resistance to ampicillin, chloramphenicol, spectinomycin, sulfonamides, and tetracycline) showed a DI of 0.81. Cluster analysis not only identified three genetically distinct groups consistent with the present serovar classification of salmonellae (serovars Typhi, Paratyphi A, and Typhimurium) but also discriminated 25 subtypes (93%) within serovar Typhi isolates. The analysis discriminated only eight subtypes within serovar Typhimurium isolates resistant to ampicillin, chloramphenicol, spectinomycin, sulfonamides, and tetracycline, possibly reflecting the emergence in the mid-1990s of the DT104 phage type, which often displays such an MDR spectrum. Coupled with the ongoing improvements in automated procedures offered by capillary electrophoresis, use of these markers is proposed in further investigations of the potential of MLVA in outbreaks of salmonellosis, especially outbreaks of typhoid fever

    A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis.

    Get PDF
    International audienceSome pathogenic bacteria are genetically very homogeneous, making strain discrimination difficult. In the last few years, tandem repeats have been increasingly recognized as markers of choice for genotyping a number of pathogens. The rapid evolution of these structures appears to contribute to the phenotypic flexibility of pathogens. The availability of whole-genome sequences has opened the way to the systematic evaluation of tandem repeats diversity and application to epidemiological studies. This report presents a database (http://minisatellites.u-psud.fr) of tandem repeats from publicly available bacterial genomes which facilitates the identification and selection of tandem repeats. We illustrate the use of this database by the characterization of minisatellites from two important human pathogens, Yersinia pestis and Bacillus anthracis. In order to avoid simple sequence contingency loci which may be of limited value as epidemiological markers, and to provide genotyping tools amenable to ordinary agarose gel electrophoresis, only tandem repeats with repeat units at least 9 bp long were evaluated. Yersinia pestis contains 64 such minisatellites in which the unit is repeated at least 7 times. An additional collection of 12 loci with at least 6 units, and a high internal conservation were also evaluated. Forty-nine are polymorphic among five Yersinia strains (twenty-five among three Y. pestis strains). Bacillus anthracis contains 30 comparable structures in which the unit is repeated at least 10 times. Half of these tandem repeats show polymorphism among the strains tested. Analysis of the currently available bacterial genome sequences classifies Bacillus anthracis and Yersinia pestis as having an average (approximately 30 per Mb) density of tandem repeat arrays longer than 100 bp when compared to the other bacterial genomes analysed to date. In both cases, testing a fraction of these sequences for polymorphism was sufficient to quickly develop a set of more than fifteen informative markers, some of which show a very high degree of polymorphism. In one instance, the polymorphism information content index reaches 0.82 with allele length covering a wide size range (600-1950 bp), and nine alleles resolved in the small number of independent Bacillus anthracis strains typed here

    A tandem repeats database for bacterial genomes: application to the genotyping of <it>Yersinia pestis</it> and <it>Bacillus anthracis</it>

    No full text
    Abstract Background Some pathogenic bacteria are genetically very homogeneous, making strain discrimination difficult. In the last few years, tandem repeats have been increasingly recognized as markers of choice for genotyping a number of pathogens. The rapid evolution of these structures appears to contribute to the phenotypic flexibility of pathogens. The availability of whole-genome sequences has opened the way to the systematic evaluation of tandem repeats diversity and application to epidemiological studies. Results This report presents a database (http://minisatellites.u-psud.fr) of tandem repeats from publicly available bacterial genomes which facilitates the identification and selection of tandem repeats. We illustrate the use of this database by the characterization of minisatellites from two important human pathogens, Yersinia pestis and Bacillus anthracis. In order to avoid simple sequence contingency loci which may be of limited value as epidemiological markers, and to provide genotyping tools amenable to ordinary agarose gel electrophoresis, only tandem repeats with repeat units at least 9 bp long were evaluated. Yersinia pestis contains 64 such minisatellites in which the unit is repeated at least 7 times. An additional collection of 12 loci with at least 6 units, and a high internal conservation were also evaluated. Forty-nine are polymorphic among five Yersinia strains (twenty-five among three Y. pestis strains). Bacillus anthracis contains 30 comparable structures in which the unit is repeated at least 10 times. Half of these tandem repeats show polymorphism among the strains tested. Conclusions Analysis of the currently available bacterial genome sequences classifies Bacillus anthracis and Yersinia pestis as having an average (approximately 30 per Mb) density of tandem repeat arrays longer than 100 bp when compared to the other bacterial genomes analysed to date. In both cases, testing a fraction of these sequences for polymorphism was sufficient to quickly develop a set of more than fifteen informative markers, some of which show a very high degree of polymorphism. In one instance, the polymorphism information content index reaches 0.82 with allele length covering a wide size range (600-1950 bp), and nine alleles resolved in the small number of independent Bacillus anthracis strains typed here.</p

    DNA-DNA hybridization study of Burkholderia species using genomic DNA macro-array analysis coupled to reverse genome probing.

    No full text
    International audienceThe present study was aimed at simplifying procedures to delineate species and identify isolates based on DNA-DNA reassociation. DNA macro-arrays harbouring genomic DNA of reference strains of several Burkholderia species were produced. Labelled genomic DNA, hybridized to such an array, allowed multiple relative pairwise comparisons. Based on the relative DNA-DNA relatedness values, a complete data matrix was constructed and the ability of the method to discriminate strains belonging to different species was assessed. This simple approach led successfully to the discrimination of Burkholderia mallei from Burkholderia pseudomallei, but also discriminated Burkholderia cepacia genomovars I and III, Burkholderia multivorans, Burkholderia pyrrocinia, Burkholderia stabilis and Burkholderia vietnamiensis. Present data showed a sufficient degree of congruence with previous DNA-DNA reassociation techniques. As part of a polyphasic taxonomic scheme, this straightforward approach is proposed to improve species definition, especially for application in the rapid screening necessary for large numbers of clinical or environmental isolates

    Selection and Validation of a Multilocus Variable-Number Tandem-Repeat Analysis Panel for Typing Shigella spp.▿ †

    No full text
    The Shigella genus has historically been separated into four species, based on biochemical assays. The classification within each species relies on serotyping. Recently, genome sequencing and DNA assays, in particular the multilocus sequence typing (MLST) approach, greatly improved the current knowledge of the origin and phylogenetic evolution of Shigella spp. The Shigella and Escherichia genera are now considered to belong to a unique genomospecies. Multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) provides valuable polymorphic markers for genotyping and performing phylogenetic analyses of highly homogeneous bacterial pathogens. Here, we assess the capability of MLVA for Shigella typing. Thirty-two potentially polymorphic VNTRs were selected by analyzing in silico five Shigella genomic sequences and subsequently evaluated. Eventually, a panel of 15 VNTRs was selected (i.e., MLVA15 analysis). MLVA15 analysis of 78 strains or genome sequences of Shigella spp. and 11 strains or genome sequences of Escherichia coli distinguished 83 genotypes. Shigella population cluster analysis gave consistent results compared to MLST. MLVA15 analysis showed capabilities for E. coli typing, providing classification among pathogenic and nonpathogenic E. coli strains included in the study. The resulting data can be queried on our genotyping webpage (http://mlva.u-psud.fr). The MLVA15 assay is rapid, highly discriminatory, and reproducible for Shigella and Escherichia strains, suggesting that it could significantly contribute to epidemiological trace-back analysis of Shigella infections and pathogenic Escherichia outbreaks. Typing was performed on strains obtained mostly from collections. Further studies should include strains of much more diverse origins, including all pathogenic E. coli types

    Get to Know Your Neighbors: Characterization of Close <i>Bacillus anthracis</i> Isolates and Toxin Profile Diversity in the <i>Bacillus cereus</i> Group

    No full text
    Unexpected atypical isolates of Bacillus cereus s.l. occasionally challenge conventional microbiology and even the most advanced techniques for anthrax detection. For anticipating and gaining trust, 65 isolates of Bacillus cereus s.l. of diverse origin were sequenced and characterized. The BTyper3 tool was used for assignation to genomospecies B. mosaicus (34), B. cereus s.s (29) and B. toyonensis (2), as well as virulence factors and toxin profiling. None of them carried any capsule or anthrax-toxin genes. All harbored the non-hemolytic toxin nheABC and sphygomyelinase spH genes, whereas 41 (63%), 30 (46%), 11 (17%) and 6 (9%) isolates harbored cytK-2, hblABCD, cesABCD and at least one insecticidal toxin gene, respectively. Matrix-assisted laser desorption ionization-time of flight mass spectrometry confirmed the production of cereulide (ces genes). Phylogeny inferred from single-nucleotide polymorphisms positioned isolates relative to the B. anthracis lineage. One isolate (BC38B) was of particular interest as it appeared to be the closest B. anthracis neighbor described so far. It harbored a large plasmid similar to other previously described B. cereus s.l. megaplasmids and at a lower extent to pXO1. Whereas bacterial collection is enriched, these high-quality public genetic data offer additional knowledge for better risk assessment using future NGS-based technologies of detection

    Development and validation of a real-time quantitative PCR assay for rapid identification of Bacillus anthracis in environmental samples

    No full text
    A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions
    corecore