16,399 research outputs found

    Atypical Thermonuclear Supernovae from Tidally Crushed White Dwarfs

    Full text link
    Suggestive evidence has accumulated that intermediate mass black holes (IMBH) exist in some globular clusters. As stars diffuse in the cluster, some will inevitable wander sufficiently close to the hole that they suffer tidal disruption. An attractive feature of the IMBH hypothesis is its potential to disrupt not only solar-type stars but also compact white dwarf stars. Attention is given to the fate of white dwarfs that approach the hole close enough to be disrupted and compressed to such extent that explosive nuclear burning may be triggered. Precise modeling of the dynamics of the encounter coupled with a nuclear network allow for a realistic determination of the explosive energy release, and it is argued that ignition is a natural outcome for white dwarfs of all varieties passing well within the tidal radius. Although event rates are estimated to be significantly less than the rate of normal Type Ia supernovae, such encounters may be frequent enough in globular clusters harboring an IMBH to warrant a search for this new class of supernova.Comment: 13 pages, 4 figures, ApJ, accepte

    Income Earning Potential versus Consumptive Amenities in Determining Ranchland Values

    Get PDF
    The relative importance of income earning potential versus consumptive values in setting ranchland prices is examined using a truncated hedonic model. The market value of New Mexico ranches is related to annual income earning potential and other ranch characteristics including ranch size, location, elevation, terrain, and the amount of deeded, public, and state trust land on the ranch. We found ranch income to be a statistically important determinant of land value, but yet a relatively small percentage of ranch value was explained by income earnings. Ranch location, scenic view, and the desirable lifestyle influenced ranch value more than ranch income.consumptive value, grazing fees, grazing permit value, hedonic model, land value, lifestyle agriculture, public land grazing, voluntary grazing permit buyout, Land Economics/Use,

    Continuity of Local Time: An applied perspective

    Full text link
    Continuity of local time for Brownian motion ranks among the most notable mathematical results in the theory of stochastic processes. This article addresses its implications from the point of view of applications. In particular an extension of previous results on an explicit role of continuity of (natural) local time is obtained for applications to recent classes of problems in physics, biology and finance involving discontinuities in a dispersion coefficient. The main theorem and its corollary provide physical principles that relate macro scale continuity of deterministic quantities to micro scale continuity of the (stochastic) local time.Comment: To appear in: "The fascination of Probability, Statistics and Their Applications. In honour of Ole E. Barndorff-Nielsen on his 80th birthday

    Spin phonon coupling in frustrated magnet CdCr2_2O4_4

    Full text link
    The infrared phonon spectrum of the spinel CdCr2O4 is measured as a function temperature from 6 K to 300K. The triply degenerate Cr phonons soften in the paramagnetic phase as temperature is lowered below 100 K and then split into a singlet and doublet in the low T antiferromagnetic phase which is tetragonally distorted to relieve the geometric frustration in the pyrochlore lattice of Cr3+^{3+} ions. The phonon splitting is inconsistent with the simple increase (decrease) in the force constants due to deceasing (increasing) bond lengths in the tetragonal phase. Rather they correspond to changes in the force constants due to the magnetic order in the antiferromagnetic state. The phonon splitting in this system is opposite of that observed earlier in ZnCr2O4 as predicted by theory. The magnitude of the splitting gives a measure of the spin phonon coupling strength which is smaller than in the case of ZnCr2O4.Comment: 4.2 pages, 4 figures, 1 reference added, submmite

    Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation

    Get PDF
    Brain endothelial cells constitute the major cellular element of the highly specialized blood–brain barrier (BBB) and thereby contribute to CNS homeostasis by restricting entry of circulating leukocytes and blood-borne molecules into the CNS. Therefore, compromised function of brain endothelial cells has serious consequences for BBB integrity. This has been associated with early events in the pathogenesis of several disorders that affect the CNS, such as multiple sclerosis, HIV-associated neurologic disorder, and stroke. Recent studies demonstrate that brain endothelial microRNAs play critical roles in the regulation of BBB function under normal and neuroinflammatory conditions. This review will focus on emerging evidence that indicates that brain endothelial microRNAs regulate barrier function and orchestrate various phases of the neuroinflammatory response, including endothelial activation in response to cytokines as well as restoration of inflamed endothelium into a quiescent state. In particular, we discuss novel microRNA regulatory mechanisms and their contribution to cellular interactions at the neurovascular unit that influence the overall function of the BBB in health and during neuroinflammatio

    Equivalence of the Falicov-Kimball and Brandt-Mielsch forms for the free energy of the infinite-dimensional Falicov-Kimball model

    Full text link
    Falicov and Kimball proposed a real-axis form for the free energy of the Falicov-Kimball model that was modified for the coherent potential approximation by Plischke. Brandt and Mielsch proposed an imaginary-axis form for the free energy of the dynamical mean field theory solution of the Falicov-Kimball model. It has long been known that these two formulae are numerically equal to each other; an explicit derivation showing this equivalence is presented here.Comment: 4 pages, 1 figure, typeset with ReVTe

    Thermodynamic Study of Excitations in a 3D Spin Liquid

    Full text link
    In order to characterize thermal excitations in a frustrated spin liquid, we have examined the magnetothermodynamics of a model geometrically frustrated magnet. Our data demonstrate a crossover in the nature of the spin excitations between the spin liquid phase and the high-temperature paramagnetic state. The temperature dependence of both the specific heat and magnetization in the spin liquid phase can be fit within a simple model which assumes that the spin excitations have a gapped quadratic dispersion relation.Comment: 5 figure

    Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO

    Full text link
    We discuss the properties of semiconducting bulk ZnO when substituted with the magnetic transition metal ions Mn and Co, with substituent fraction ranging from xx = 0.02 to xx = 0.15. The magnetic properties were measured as a function of magnetic field and temperature and we find no evidence for magnetic ordering in these systems down to TT = 2 K. The magnetization can be fit by the sum of a Curie-Weiss term with a Weiss temperature of Θ\Theta\gg100 K and a Curie term. We attribute this behavior to contributions from both \textit{t}M ions with \textit{t}M nearest neighbors and from isolated spins. This particular functional form for the susceptibility is used to explain why no ordering is observed in \textit{t}M substituted ZnO samples despite the large values of the Weiss temperature. We also discuss in detail the methods we used to minimize any impurity contributions to the magnetic signal.Comment: 6 pages, 4 figures (revised
    corecore