10,922 research outputs found
Completely dark galaxies: their existence, properties, and strategies for finding them
There are a number of theoretical and observational hints that large numbers
of low-mass galaxies composed entirely of dark matter exist in the field. The
theoretical considerations follow from the prediction of cold dark matter
theory that there exist many low-mass galaxies for every massive one. The
observational considerations follow from the observed paucity of these low-mass
galaxies in the field but not in dense clusters of galaxies; this suggests that
the lack of small galaxies in the field is due to the inhibition of star
formation in the galaxies as opposed to the fact that their small dark matter
halos do not exist. In this work we outline the likely properties of low-mass
dark galaxies, and describe observational strategies for finding them, and
where in the sky to search. The results are presented as a function of the
global properties of dark matter, in particular the presence or absence of a
substantial baryonic dark matter component. If the dark matter is purely cold
and has a Navarro, Frenk and White density profile, directly detecting dark
galaxies will only be feasible with present technology if the galaxy has a
maximum velocity dispersion in excess of 70 km/s, in which case the dark
galaxies could strongly lens background objects. This is much higher than the
maximum velocity dispersions in most dwarf galaxies. If the dark matter in
galaxy halos has a baryonic component close to the cosmic ratio, the
possibility of directly detecting dark galaxies is much more realistic; the
optimal method of detection will depend on the nature of the dark matter. A
number of more indirect methods are also discussed.Comment: 12 pages, 4 figures, MNRAS in pres
Impact of herbal supplements nowadays: an overview
At present, people around the world are looking for more natural alternatives for treating all kinds of health conditions as well as improving the general wellbeing. As such, the consumption of herbal supplements has increased globally, generating billions in revenue. The use of these herbal products is firmly rooted in the traditional use of medicinal plants for disease prevention and treatment, practiced in several cultures. Although herbal products are recognized by the WHO as an essential component of the healthcare system, there have been increasing concerns regarding their quality and safety. Generally, herbal products are not strictly regulated as they are largely categorized under dietary supplements, thus escaping the rigorous scrutiny meted out to pharmaceuticals. Notwithstanding that many consumers generally perceive herbal products as benign and inherently safe, several reports have shown that herbal products can induce mild to acute adverse effects of clinical significance. Moreover, some herbal products on the market have been reported to be contaminated with microorganisms, environmental toxins, and adulterants. Furthermore, evidence regarding the efficacy of herbal supplements is extremely discrepant
Continuity of Local Time: An applied perspective
Continuity of local time for Brownian motion ranks among the most notable
mathematical results in the theory of stochastic processes. This article
addresses its implications from the point of view of applications. In
particular an extension of previous results on an explicit role of continuity
of (natural) local time is obtained for applications to recent classes of
problems in physics, biology and finance involving discontinuities in a
dispersion coefficient. The main theorem and its corollary provide physical
principles that relate macro scale continuity of deterministic quantities to
micro scale continuity of the (stochastic) local time.Comment: To appear in: "The fascination of Probability, Statistics and Their
Applications. In honour of Ole E. Barndorff-Nielsen on his 80th birthday
Requirements for artificial muscles to design robotic fingers
International audienceThis work is part of the ProMain project that concerns the modeling and the design of a soft robotic hand prosthesis, actuated by artificial muscles and controlled with surface Electromyography (EMG) signals. In a first stage, we designed a robotic finger based on the equivalent mechanical model of the human finger. The model takes into account three phalangeal joints, flexion and extension movements are studied. The robotic finger has three Degrees of Freedom (DoF). The finger is designed to be under-actuated and driven by tendons, i.e. only one servo motor actu-ates the whole finger, and the motor is coupled to the finger mechanism through two flexible wires. As the aim is to design a robotic hand prosthesis that uses artificial muscles, we propose and carry out two experiments to characterize the specifications of the actuator. The first experiment measures the pinch force of the human finger, and the second measures the achieved force using our robotic finger and five different servo motors. It allows us to enhance experimental results with the mathematical model of the finger, to identify the requirements of the artificial muscle
Thermoelectric effects in a strongly correlated model for NaCoO
Thermal response functions of strongly correlated electron systems are of
appreciable interest to the larger scientific community both theoretically and
technologically. Here we focus on the infinitely correlated t-J model on a
geometrically frustrated two-dimensional triangular lattice.
Using exact diagonalization on a finite sized system we calculate the
dynamical thermal response functions in order to determine the thermopower,
Lorenz number, and dimensionless figure of merit. The dynamical thermal
response functions is compared to the infinite frequency limit and shown to be
very weak functions of frequency, hence, establishing the validity of the high
frequency formalism recently proposed by Shastry for the thermopower, Lorenz
number, and the dimensionless figure of merit. Further, the thermopower is
demonstrated to have a low to mid temperature enhancement when the sign of the
hopping parameter is switched from positive to negative for the
geometrically frustrated lattice considered.Comment: 16 pages, 10 figures, color version available at
http://physics.ucsc.edu/~peterson/mrpeterson-condmat-NCO.pdf. V.2 has fixed
minor typos in Eq. 11, 19, 25, and 26. V.3 is a color versio
The LHC Post Mortem Analysis Framework
The LHC with its unprecedented complexity and criticality of beam operation will need thorough analysis of data taken from systems such as power converters, interlocks and beam instrumentation during events like magnet quenches and beam loss. The causes of beam aborts or in the worst case equipment damage have to be revealed to improve operational procedures and protection systems. The correct functioning of the protection systems with their required redundancy has to be verified after each such event. Post mortem analysis software for the control room has been prepared with automated analysis packages in view of the large number of systems and data volume. This paper recalls the requirements for the LHC Beam Post Mortem System (PM) and the necessity for highly reliable data collection. It describes in detail the redundant architecture for data collection as well as the chosen implementation of a multi-level analysis framework, allowing for automated analysis and qualification of a beam dump event based on expert provided analysis modules. It concludes with an example of the data taken during first beam tests in September 2008 with a first version of the system
- …