687 research outputs found

    Magnetic Phases of Electron-Doped Manganites

    Full text link
    We study the anisotropic magnetic structures exhibited by electron-doped manganites using a model which incorporates the double-exchange between orbital ly degenerate ege_{g} electrons and the super-exchange between t2gt_{2g} electrons with realistic values of the Hund's coupling(JHJ_H), the super-exchange coupling(JAFJ_{AF}), and the bandwidth(WW). We look at the relative stabilities of the G, C and A type antiferromagnetic ph ases. In particular we find that the G-phase is stable for low electron doping as seen in experiments. We find good agreement with the experimentally observed magnetic phase diagrams of electron-doped manganites (x>0.5x > 0.5) such as Nd1x_{1-x}Srx_{x}MnO3_{3}, Pr1x_{1-x}Srx_{x}MnO3_{3}, and Sm1x_{1-x}Cax_{x}MnO3_{3}. We can also explain the experimentally observed orbital structures of the C a nd A phases. We also extend our calculation for electron-doped bilayer manganites of the form R22x_{2-2x}A1+2x_{1+2x}Mn2_2O7_7 and predict that the C-phase will be absent in t hese systems due to their reduced dimensionality.Comment: 7 .ps files included. To appear in Phys. Rev. B (Feb 2001

    Ferromagnetic Polarons in Manganites

    Full text link
    Using the Lanczos method in linear chains we study the double exchange model in the low concentration limit, including an antiferromagnetic super-exchange K. In the strong coupling limit we find that the ground state contains ferromagnetic polarons whose length is very sensitive to the value of K/t. We investigate the dispersion relation, the trapping by impurities, and the interaction between these polarons. As the overlap between polarons increases, by decreasing K/t, the effective interaction between them changes from antiferromagnetic to ferromagnetic. The scaling to the thermodynamic limit suggests an attractive interaction in the strong coupling regime (J_h > t) and no binding in the weak limit (J_h \simeq t).Comment: 12 pages, accepted in PRB, to be published in Novembe

    Comparison of S=0 and S=1/2 Impurities in Haldane Chain Compound, Y2BaNiO5Y_{2}BaNiO_{5}

    Full text link
    We present the effect of Zn (S=0) and Cu (S=1/2) substitution at the Ni site of S=1 Haldane chain compound Y2BaNiO5Y_{2}BaNiO_{5}. 89^{89}Y NMR allows us to measure the local magnetic susceptibility at different distances from the defects. The 89^{89}Y NMR spectrum consists of one central peak and several less intense satellite peaks. The shift of the central peak measures the uniform susceptibility, which displays a Haldane gap DeltaDeltaequivequiv100 K and it corresponds to an AF coupling Jequivequiv260 K between the near-neighbor Ni spins. Zn or Cu substitution does not affect the Haldane gap. The satellites, which are evenly distributed on the two sides of the central peak, probe the antiferromagnetic staggered magnetization near the substituted site, which decays exponentially. Its extension is found identical for both impurities and corresponds accurately to the correlation length xixi(T) determined by Monte Carlo (QMC) simulations for the pure compound. In the case of non-magnetic Zn, the temperature dependence of the induced magnetization is consistent with a Curie law with an "effective" spin S=0.4 on each side of Zn, which is well accounted by Quantum Monte Carlo computations of the spinless-defect-induced magnetism. In the case of magnetic Cu, the similarity of the induced magnetism to the Zn case implies a weak coupling of the Cu spin to the nearest- neighbor Ni spins. The slight reductionin the induced polarization with respect to Zn is reproduced by QMC computations by considering an antiferromagnetic coupling of strength J'=0.1-0.2 J between the S=1/2 Cu-spin and nearest-neighbor Ni-spin.Comment: 15 pages, 18 figures, submitted to Physical Review

    Phase transitions in the spinless Falicov-Kimball model with correlated hopping

    Full text link
    The canonical Monte-Carlo is used to study the phase transitions from the low-temperature ordered phase to the high-temperature disordered phase in the two-dimensional Falicov-Kimball model with correlated hopping. As the low-temperature ordered phase we consider the chessboard phase, the axial striped phase and the segregated phase. It is shown that all three phases persist also at finite temperatures (up to the critical temperature τc\tau_c) and that the phase transition at the critical point is of the first order for the chessboard and axial striped phase and of the second order for the segregated phase. In addition, it is found that the critical temperature is reduced with the increasing amplitude of correlated hopping tt' in the chessboard phase and it is strongly enhanced by tt' in the axial striped and segregated phase.Comment: 17 pages, 6 figure

    Colossal dielectric constants in transition-metal oxides

    Get PDF
    Many transition-metal oxides show very large ("colossal") magnitudes of the dielectric constant and thus have immense potential for applications in modern microelectronics and for the development of new capacitance-based energy-storage devices. In the present work, we thoroughly discuss the mechanisms that can lead to colossal values of the dielectric constant, especially emphasising effects generated by external and internal interfaces, including electronic phase separation. In addition, we provide a detailed overview and discussion of the dielectric properties of CaCu3Ti4O12 and related systems, which is today's most investigated material with colossal dielectric constant. Also a variety of further transition-metal oxides with large dielectric constants are treated in detail, among them the system La2-xSrxNiO4 where electronic phase separation may play a role in the generation of a colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom

    Theory of the first-order isostructural valence phase transitions in mixed valence compounds YbIn_{x}Ag_{1-x}Cu_{4}

    Full text link
    For describing the first-order isostructural valence phase transition in mixed valence compounds we develop a new approach based on the lattice Anderson model. We take into account the Coulomb interaction between localized f and conduction band electrons and two mechanisms of electron-lattice coupling. One is related to the volume dependence of the hybridization. The other is related to local deformations produced by f- shell size fluctuations accompanying valence fluctuations. The large f -state degeneracy allows us to use the 1/N expansion method. Within the model we develop a mean-field theory for the first-order valence phase transition in YbInCu_{4}. It is shown that the Coulomb interaction enhances the exchange interaction between f and conduction band electron spins and is the driving force of the phase transition. A comparison between the theoretical calculations and experimental measurements of the valence change, susceptibility, specific heat, entropy, elastic constants and volume change in YbInCu_{4} and YbAgCu_{4} are presented, and a good quantitative agreement is found. On the basis of the model we describe the evolution from the first-order valence phase transition to the continuous transition into the heavy-fermion ground state in the series of compounds YbIn_{1-x}Ag_{x}Cu_{4}. The effect of pressure on physical properties of YbInCu_{4} is studied and the H-T phase diagram is found.Comment: 17 pages RevTeX, 9 Postscript figures, to be submitted to Phys.Rev.

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Root microbiome modulates plant growth promotion induced by low doses of glyphosate

    Get PDF
    Glyphosate is a commonly used herbicide with a broad action spectrum. However, at sublethal doses, glyphosate can induce plant growth, a phenomenon known as hormesis. Most glyphosate hormesis studies have been performed under microbe-free or reduced-microbial-diversity conditions; only a few were performed in open systems or agricultural fields, which include a higher diversity of soil microorganisms. Here, we investigated how microbes affect the8 hormesis induced by low doses of glyphosate. To this end, we used Arabidopsis thaliana and a well-characterized synthetic bacterial community of 185 strains (SynCom) that mimics the root-associated microbiome of Arabidopsis. We found that a dose of 3.6 x 10-6 g acid equivalent/liter (low dose of glyphosate, or LDG) produced an ~14% increase in the shoot dry weight (i.e., hormesis) of uninoculated plants. Unexpectedly, in plants inoculated with the SynCom, LDG reduced shoot dry weight by 17%. We found that LDG enriched two Firmicutes and two Burkholderia strains in the roots. These specific strains are known to act as root growth inhibitors (RGI) in monoassociation assays. We tested the link between RGI and shoot dry weight reduction in LDG by assembling a new synthetic community lacking RGI strains. Dropping RGI strains out of the community restored growth induction by LDG. Finally, we showed that individual RGI strains from a few specific phyla were sufficient to switch the response to LDG from growth promotion to growth inhibition. Our results indicate that glyphosate hormesis was completely dependent on the root microbiome composition, specifically on the presence of root growth inhibitor strains

    Genetic changes associated with relapse in favorable histology Wilms tumor: A Children's Oncology Group AREN03B2 study

    Get PDF
    Over the last decade, sequencing of primary tumors has clarified the genetic underpinnings of Wilms tumor but has not affected therapy, outcome, or toxicity. We now sharpen our focus on relapse samples from the umbrella AREN03B2 study. We show that over 40% of relapse samples contain mutations in SIX1 or genes of the MYCN network, drivers of progenitor proliferation. Not previously seen in large studies of primary Wilms tumors, DIS3 and TERT are now identified as recurrently mutated. The analysis of primary-relapse tumor pairs suggests that 11p15 loss of heterozygosity (and other copy number changes) and mutations in WT1 and MLLT1 typically occur early, but mutations in SIX1, MYCN, and WTX are late developments in some individuals. Most strikingly, 75% of relapse samples had gain of 1q, providing strong conceptual support for studying circulating tumor DNA in clinical trials to better detect 1q gain earlier and monitor response

    Roadmap on Li-ion battery manufacturing research

    Get PDF
    Growth in the Li-ion battery market continues to accelerate, driven primarily by the increasing need for economic energy storage for electric vehicles. Electrode manufacture by slurry casting is the first main step in cell production but much of the manufacturing optimisation is based on trial and error, know-how and individual expertise. Advancing manufacturing science that underpins Li-ion battery electrode production is critical to adding to the electrode manufacturing value chain. Overcoming the current barriers in electrode manufacturing requires advances in materials, manufacturing technology, in-line process metrology and data analytics, and can enable improvements in cell performance, quality, safety and process sustainability. In this roadmap we explore the research opportunities to improve each stage of the electrode manufacturing process, from materials synthesis through to electrode calendering. We highlight the role of new process technology, such as dry processing, and advanced electrode design supported through electrode level, physics-based modelling. Progress in data driven models of electrode manufacturing processes is also considered. We conclude there is a growing need for innovations in process metrology to aid fundamental understanding and to enable feedback control, an opportunity for electrode design to reduce trial and error, and an urgent imperative to improve the sustainability of manufacture
    corecore