16 research outputs found

    The Importance of Social Networks in Neurosurgery Training in Low/Middle income countries

    Get PDF
    Neurosurgery is evolving with new techniques and technologies, relies heavily on high-quality education and training. Social networks like Twitter, Facebook, Instagram and LinkedIn have become integral to this training. These platforms enable sharing of surgical experiences, fostering global knowledge-sharing and collaboration among neurosurgeons. According to the PICO format, the target population (P) for the purpose of this paper are medical students, neurosurgical residents and consultants on the role of social media (I) in neurosurgery among Low-Middle income countries (C) with the main outcome to understand the collaborative domain of learning.This cross-sectional survey, conducted in June-July 2023, involved 210 medical students, neurosurgery residents, fellows, and practicing neurosurgeons from low and middle-income countries. A structured questionnaire assessed social network usage for neurosurgery training, covering demographic details, usage frequency, and purposes like education, collaboration, and communication. Participants rated these platforms' effectiveness in training on a 1-5 scale. Data collection employed emails, social media groups, and direct messaging, assuring respondent anonymity. The survey aimed to understand and improve social networks' use in neurosurgery, focusing on professional development, challenges, and future potential in training.In a survey of 210 participants from low and middle-income countries, 85.5% were male, 14.5% female, with diverse roles: 42.9% neurosurgery residents, 40% practicing neurosurgeons, 14.6% medical students, and 2.4% other healthcare professionals. Experience ranged from 0 to 35 years, with Mexico, Nigeria, and Kenya being the top participating countries. Most respondents rated neurosurgery training resources in their countries as poor or very poor. 88.7% used social media professionally, predominantly WhatsApp and YouTube. Content focused on surgical videos, research papers, and webinars. Concerns included information quality and data privacy. Interactive case discussions, webinars, and lectures were preferred resources, and most see a future role for social media in neurosurgery training.Our study underscores the crucial role of social media in neurosurgery training and practice in low and middle-income countries (LMICs). Key resources include surgical videos, research papers, and webinars. While social media offers a cost-effective, global knowledge-sharing platform, challenges like limited internet access, digital literacy, and misinformation risks remain significant in these regions

    Latex vascular injection as method for enhanced neurosurgical training and skills

    Get PDF
    BackgroundTridimensional medical knowledge of human anatomy is a key step in the undergraduate and postgraduate medical education, especially in surgical fields. Training simulation before real surgical procedures is necessary to develop clinical competences and to minimize surgical complications.MethodsLatex injection of vascular system in brain and in head-neck segment is made after washing out of the vascular system and fixation of the specimen before and after latex injection.ResultsUsing this latex injection technique, the vascular system of 90% of brains and 80% of head-neck segments are well-perfused. Latex-injected vessels maintain real appearance compared to silicone, and more flexible vessels compared to resins. Besides, latex makes possible a better perfusion of small vessels.ConclusionsLatex vascular injection technique of the brain and head-neck segment is a simulation model for neurosurgical training based on real experiencing to improve surgical skills and surgical results

    Cell-Free miRNAs as Non-Invasive Biomarkers in Brain Tumors

    No full text
    Diagnosing brain tumors, especially malignant variants, such as glioblastoma, medulloblastoma, or brain metastasis, presents a considerable obstacle, while current treatment methods often yield unsatisfactory results. The monitoring of individuals with brain neoplasms becomes burdensome due to the intricate tumor nature and associated risks of tissue biopsies, compounded by the restricted accuracy and sensitivity of presently available non-invasive diagnostic techniques. The uncertainties surrounding diagnosis and the tumor’s reaction to treatment can lead to delays in critical determinations that profoundly influence the prognosis of the disease. Consequently, there exists a pressing necessity to formulate and validate dependable, minimally invasive biomarkers that can effectively diagnose and predict brain tumors. Cell-free microRNAs (miRNAs), which remain stable and detectable in human bodily fluids, such as blood and cerebrospinal fluid (CSF), have emerged as potential indicators for a range of ailments, brain tumors included. Numerous investigations have showcased the viability of profiling cell-free miRNA expression in both CSF and blood samples obtained from patients with brain tumors. Distinct miRNAs demonstrate varying expression patterns within CSF and blood. While cell-free microRNAs in the blood exhibit potential in diagnosing, prognosticating, and monitoring treatment across diverse tumor types, they fall short in effectively diagnosing brain tumors. Conversely, the cell-free miRNA profile within CSF demonstrates high potential in delivering precise and specific evaluations of brain tumors

    MiRNAs and lncRNAs in the regulation of innate immune signaling

    No full text
    The detection and defense against foreign agents and pathogens by the innate immune system is a crucial mechanism in the body. A comprehensive understanding of the signaling mechanisms involved in innate immunity is essential for developing effective diagnostic tools and therapies for infectious diseases. Innate immune response is a complex process involving recognition of pathogens through receptors, activation of signaling pathways, and cytokine production, which are all crucial for deploying appropriate countermeasures. Non-coding RNAs (ncRNAs) are vital regulators of the immune response during infections, mediating the body's defense mechanisms. However, an overactive immune response can lead to tissue damage, and maintaining immune homeostasis is a complex process in which ncRNAs play a significant role. Recent studies have identified microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as key players in controlling gene expression in innate immune pathways, thereby participating in antiviral defenses, tumor immunity, and autoimmune diseases. MiRNAs act by regulating host defense mechanisms against viruses, bacteria, and fungi by targeting mRNA at the post-transcriptional level, while lncRNAs function as competing RNAs, blocking the binding of miRNAs to mRNA. This review provides an overview of the regulatory role of miRNAs and lncRNAs in innate immunity and its mechanisms, as well as highlights potential future research directions, including the expression and maturation of new ncRNAs and the conservation of ncRNAs in evolution

    Region 4 of Rhizobium etli primary-sigma factor (SigA) confers transcriptional laxity in Escherichia coli

    Get PDF
    Sigma factors are RNA polymerase subunits engaged in promoter recognition and DNA strand separation during transcription initiation in bacteria. Primary-sigma factors are responsible for the expression of housekeeping genes and are essential for survival. RpoD, the primary-sigma factor of Escherichia coli, a Îł-proteobacteria, recognizes consensus promoter sequences highly similar to those of some α-proteobacteria species. Despite this resemblance, RpoD is unable to sustain transcription from most of the α-proteobacterial promoters tested so far. In contrast, we have found that SigA, the primary-sigma factor of Rhizobium etli, an α-proteobacteria, is able to transcribe E. coli promoters, although it exhibits only 48% identity (98% coverage) to RpoD. We have called this the transcriptional laxity phenomenon. Here, we show that SigA partially complements the thermo-sensitive deficiency of RpoD285 from E. coli strain UQ285 and that the SigA region σ4 is responsible for this phenotype. Sixteen out of 74 residues (21.6%) within region σ4 are variable between RpoD and SigA. Mutating these residues significantly improves SigA ability to complement E. coli UQ285. Only six of these residues fall into positions already known to interact with promoter DNA and to comprise a helix-turn-helix motif. The remaining variable positions are located on previously unexplored sites inside region σ4, specifically into the first two α-helices of the region. Neither of the variable positions confined to these helices seem to interact directly with promoter sequence; instead, we adduce that these residues participate allosterically by contributing to correct region folding and/or positioning of the HTH motif. We propose that transcriptional laxity is a mechanism for ensuring transcription in spite of naturally occurring mutations from endogenous promoters and/or horizontally transferred DNA sequences, allowing survival and fast environmental adaptation of α-proteobacteria

    Development of a 3D Printed Brain Model with Vasculature for Neurosurgical Procedure Visualisation and Training

    No full text
    Background: Simulation-based techniques using three-dimensional models are gaining popularity in neurosurgical training. Most pre-existing models are expensive, so we felt a need to develop a real-life model using 3D printing technology to train in endoscopic third ventriculostomy. Methods: The brain model was made using a 3D-printed resin mold from patient-specific MRI data. The mold was filled with silicone Ecoflex™ 00-10 and mixed with Silc Pig® pigment additives to replicate the color and consistency of brain tissue. The dura mater was made from quick-drying silicone paste admixed with gray dye. The blood vessels were made from a silicone 3D-printed mold based on magnetic resonance imaging. Liquid containing paprika oleoresin dye was used to simulate blood and was pumped through the vessels to simulate pulsatile motion. Results: Seven residents and eight senior neurosurgeons were recruited to test our model. The participants reported that the size and anatomy of the elements were very similar to real structures. The model was helpful for training neuroendoscopic 3D perception and navigation. Conclusions: We developed an endoscopic third ventriculostomy training model using 3D printing technology that provides anatomical precision and a realistic simulation. We hope our model can provide an indispensable tool for young neurosurgeons to gain operative experience without exposing patients to risk

    Development of a 3D Printed Brain Model with Vasculature for Neurosurgical Procedure Visualisation and Training

    No full text
    Background: Simulation-based techniques using three-dimensional models are gaining popularity in neurosurgical training. Most pre-existing models are expensive, so we felt a need to develop a real-life model using 3D printing technology to train in endoscopic third ventriculostomy. Methods: The brain model was made using a 3D-printed resin mold from patient-specific MRI data. The mold was filled with silicone Ecoflexℱ 00-10 and mixed with Silc Pig¼ pigment additives to replicate the color and consistency of brain tissue. The dura mater was made from quick-drying silicone paste admixed with gray dye. The blood vessels were made from a silicone 3D-printed mold based on magnetic resonance imaging. Liquid containing paprika oleoresin dye was used to simulate blood and was pumped through the vessels to simulate pulsatile motion. Results: Seven residents and eight senior neurosurgeons were recruited to test our model. The participants reported that the size and anatomy of the elements were very similar to real structures. The model was helpful for training neuroendoscopic 3D perception and navigation. Conclusions: We developed an endoscopic third ventriculostomy training model using 3D printing technology that provides anatomical precision and a realistic simulation. We hope our model can provide an indispensable tool for young neurosurgeons to gain operative experience without exposing patients to risk

    Analyzing the Clinical Potential of Stromal Vascular Fraction: A Comprehensive Literature Review

    No full text
    Background: Regenerative medicine is evolving with discoveries like the stromal vascular fraction (SVF), a diverse cell group from adipose tissue with therapeutic promise. Originating from fat cell metabolism studies in the 1960s, SVF’s versatility was recognized after demonstrating multipotency. Comprising of cells like pericytes, smooth muscle cells, and, notably, adipose-derived stem cells (ADSCs), SVF offers tissue regeneration and repair through the differentiation and secretion of growth factors. Its therapeutic efficacy is due to these cells’ synergistic action, prompting extensive research. Methods: This review analyzed the relevant literature on SVF, covering its composition, action mechanisms, clinical applications, and future directions. An extensive literature search from January 2018 to June 2023 was conducted across databases like PubMed, Embase, etc., using specific keywords. Results: The systematic literature search yielded a total of 473 articles. Sixteen articles met the inclusion criteria and were included in the review. This rigorous methodology provides a framework for a thorough and systematic analysis of the existing literature on SVF, offering robust insights into the potential of this important cell population in regenerative medicine. Conclusions: Our review reveals the potential of SVF, a heterogeneous cell mixture, as a powerful tool in regenerative medicine. SVF has demonstrated therapeutic efficacy and safety across disciplines, improving pain, tissue regeneration, graft survival, and wound healing while exhibiting immunomodulatory and anti-inflammatory properties

    Macrophages in Recurrent Glioblastoma as a Prognostic Factor in the Synergistic System of the Tumor Microenvironment

    No full text
    Glioblastoma (GBM) is a common and highly malignant primary tumor of the central nervous system in adults. Ever more recent papers are focusing on understanding the role of the tumor microenvironment (TME) in affecting tumorigenesis and the subsequent prognosis. We assessed the impact of macrophages in the TME on the prognosis in patients with recurrent GBM. A PubMed, MEDLINE and Scopus review was conducted to identify all studies dealing with macrophages in the GBM microenvironment from January 2016 to December 2022. Glioma-associated macrophages (GAMs) act critically in enhancing tumor progression and can alter drug resistance, promoting resistance to radiotherapy and establishing an immunosuppressive environment. M1 macrophages are characterized by increased secretion of proinflammatory cytokines, such as IL-1ß, tumor necrosis factor (TNF), IL-27, matrix metalloproteinase (MMPs), CCL2, and VEGF (vascular endothelial growth factor), IGF1, that can lead to the destruction of the tissue. In contrast, M2 is supposed to participate in immunosuppression and tumor progression, which is formed after being exposed to the macrophage M-CSF, IL-10, IL-35 and the transforming growth factor-ß (TGF-ÎČ). Because there is currently no standard of care in recurrent GBM, novel identified targeted therapies based on the complex signaling and interactions between the glioma stem cells (GSCs) and the TME, especially resident microglia and bone-marrow-derived macrophages, may be helpful in improving the overall survival of these patients in the near future

    Expanding Access to Microneurosurgery in Low-Resource Settings: Feasibility of a Low-Cost Exoscope in Transforaminal Lumbar Interbody Fusion

    No full text
    Objectives Less than a quarter of the world population has access to microneurosurgical care within a range of 2 hours. We introduce a simplified exoscopic visualization system to achieve optical magnification, illumination, and video recording in low-resource settings. Materials and Methods We purchased a 48 megapixels industrial microscope camera with a heavy-duty support arm, a wide field c-mount lens, and an LED ring light at a total cost of US$ 125. Sixteen patients with lumbar degenerative disk disease were divided into an exoscope group and a conventional microscope group. In each group we performed four open and four minimally invasive transforaminal lumbar interbody fusion procedures. We further conducted a questionnaire-based assessment of the user experience. Results The overall user experience was positive. The exoscope achieved similar postoperative improvement with comparable blood loss and operating time as the conventional microscope. It provided a similar image quality, magnification and illumination. Yet, the lack of stereoscopic perception and the cumbersome adjustability of the camera position and angle resulted in a shallow learning curve. Most users strongly agreed that the exoscope would significantly improve surgical teaching. Over 75% reported they would recommend the exoscope to colleagues and all users saw its great potential for low-resource environments. Conclusion Our low-budget exoscope is technically non-inferior to the conventional binocular microscope and purchasable at a significantly lower price. It may thus help expand access to neurosurgical care and training worldwide
    corecore