21,317 research outputs found
The dissimilar chemical composition of the planet-hosting stars of the XO-2 binary system
Using high-quality spectra of the twin stars in the XO-2 binary system, we
have detected significant differences in the chemical composition of their
photospheres. The differences correlate strongly with the elements' dust
condensation temperature. In XO-2N, volatiles are enhanced by about 0.015 dex
and refractories are overabundant by up to 0.090 dex. On average, our error bar
in relative abundance is 0.012 dex. We present an early metal-depletion
scenario in which the formation of the gas giant planets known to exist around
these stars is responsible for a 0.015 dex offset in the abundances of all
elements while 20 M_Earth of non-detected rocky objects that formed around
XO-2S explain the additional refractory-element difference. An alternative
explanation involves the late accretion of at least 20 M_Earth of planet-like
material by XO-2N, allegedly as a result of the migration of the hot Jupiter
detected around that star. Dust cleansing by a nearby hot star as well as age
or Galactic birthplace effects can be ruled out as valid explanations for this
phenomenon.Comment: ApJ, in press. Complete linelist (Table 3) available in the "Other
formats -> Source" downloa
Population-scale organization of cerebellar granule neuron signaling during a visuomotor behavior.
Granule cells at the input layer of the cerebellum comprise over half the neurons in the human brain and are thought to be critical for learning. However, little is known about granule neuron signaling at the population scale during behavior. We used calcium imaging in awake zebrafish during optokinetic behavior to record transgenically identified granule neurons throughout a cerebellar population. A significant fraction of the population was responsive at any given time. In contrast to core precerebellar populations, granule neuron responses were relatively heterogeneous, with variation in the degree of rectification and the balance of positive versus negative changes in activity. Functional correlations were strongest for nearby cells, with weak spatial gradients in the degree of rectification and the average sign of response. These data open a new window upon cerebellar function and suggest granule layer signals represent elementary building blocks under-represented in core sensorimotor pathways, thereby enabling the construction of novel patterns of activity for learning
- …