80 research outputs found

    Effect of Nonlinear Thermal Radiation on MHD Chemically Reacting Maxwell Fluid Flow Past a Linearly Stretching Sheet

    Get PDF
    This communication addresses the influence of nonlinear thermal radiation on magneto hydrodynamic Maxwell fluid flow past a linearly stretching surface with heat and mass transfer. The effects of heat generation/absorption and chemical reaction are taken into account. At first, we converted the governing partial differential equations into nonlinear ordinary differential equations with the help of suitable similarity transformations and solved by using Runge-Kutta based shooting technique. Further, the effects of various physical parameters on velocity, temperature and concentration fields were discussed thoroughly with the help of graphs obtained by using bvp5c MATLAB package. In view of many engineering applications we also computed the friction factor, heat and mass transfer coefficients and presented them in tables. Results indicate that an increase in thermal buoyancy parameter enhances the fluid velocity but suppresses the temperature. Deborah number have tendency to reduce the fluid velocity and mass transfer rate. It is also perceived that temperature ratio parameter has the propensity to enrich the fluid temperature

    Synthesis of Black Phosphorene Quantum Dots from Red Phosphorus

    Get PDF
    Phosphorene quantum dots (PQDs) are most commonly derived from high-cost black phosphorus, while previous syntheses from the low-cost red phosphorus (Pred) allotrope are highly oxidised. Herein, we present an intrinsically scalable method to producing high quality PQDs, by first ball-milling Pred to create nanocrystalline Pblack and subsequent reductive etching using lithium electride solvated in liquid ammonia. The resultant ~25 nm PQDs are crystalline with low oxygen content, and spontaneously soluble as individualized monolayers in tertiary amide solvents, as directly imaged by liquid-phase transmission electron microscopy. This new method presents a scalable route to producing quantities of high quality PQDs for academic and industrial applications

    Understanding the Cyclic (In)stability and the Effects of Presence of a Stable Conducting Network on the Electrochemical Performances of Na2Ti3O7

    No full text
    Despite being a promising anode material for the Na-ion battery system, Na-titanate (viz., Na2Ti3O7) lacks in terms of cyclic stability; the cause(s) for which are under debate. Against this backdrop, through electrochemical measurements and insitu synchrotron X-ray diffraction studies, the present work develops insights into the aspects concerning electrochemical reversibility of the fully sodiated phase (i.e., Na4Ti3O7), possible occurrence of irreversible reactions in Na-ion cells, influences of the same towards cyclic instability, and a strategy towards alleviating this problem. The insitu studies rule out (in)stability/(ir)reversibility of Na4Ti3O7 as being a major cause for the capacity fade; rather they indicate the formation of 'impurity' phase(s) due to reaction with the electrolyte. Incorporation of multi-walled carbon nanotubes (MWCNTs; uniformly 'wrapping' the rod-shaped Na2Ti3O7 particles) significantly improved the cyclic stability (ca. 78% reversible capacity retention after 50 cycles, as compared to ca. 6% without MWCNTs) and rate capability (with nearly flat potential plateaus at 5C). The same suppressed the increase in charge-transfer resistance upon cycling by an order of magnitude and also changed the sodiation reaction from being primarily surface to diffusion controlled. Correlation of the results/analysis indicate that, in the absence of a stable conducting network, loss in electrical connectivity owing to the formation of insulating/passivating (surface) phase(s) is the major cause for capacity fade of Na2Ti3O7

    In vivo clearance of Japanese encephalitis virus by adoptively transferred virus specific cytotoxic T lymphocytes

    No full text
    Japanese encephalitis virus (JEV) is a positive stranded RNA virus that belongs to the flavivirus group, JEV infection damages the central nervous system (CNS) and is one of the main causative agents of acute encephalitis, H-2 restricted virus-specific cytotoxic T lymphocytes (CTL) have been generated specifically against JEV in our laboratory and these CTL have been shown to protect mice against lethal challenge with JEV, Virus replication was found to be inhibited in the brains of animals that mere adoptively transferred with JEV specific CTL as revealed by immunohistological staining as,veil as viral plaque assays. We further show that virus specific CTL could be recovered from such protected mice as long as 45 days after adoptive transfer

    Implementing and compiling clustering using Mac Queens alias K-means apriori algorithm

    No full text
    Abstract This paper aims at implementing a Symmetric Multi-Threading. The paper provides a true concurrency, also known as Symmetric Multi-Threading (IACKMA

    A vein-like nanoporous network of Nb2O5 with a higher lithium intercalation discharge cut-off voltage

    No full text
    A novel morphology of a criss-cross vein-like nanoporous network of Nb 2O5 produced using a simple electrochemical anodization method is presented as a superior electrode for safe lithium-ion batteries. Scanning electron microscopy (SEM) observations demonstrate that the synthesised Nb2O5 is made of a continuous and highly packed vein-like nanoporous network with many lateral interconnections, which provides excellent channels for the fast transfer of both Li+ ions and electrons. Even without surface coating or cation doping, the porous Nb2O5 electrode could deliver durable capacity within the operating voltage window of 1.0-3.0 V vs. Li/Li+, with a reversible capacity of 201 mA h g -1 after 300 cycles at a current density of 0.4 A g-1. At the higher discharge cut-off voltage window of 1.2-3.0 V, the reversible capacity decreased to 175 mA h g-1. The first cycle Coulombic efficiency was above 94% for both operating voltage windows with a negligible capacity fading up to 300 cycles. The porous Nb2O5 electrode demonstrates several advantages as an anode including: (i) Improved cell safety due to a higher, V ≥ 1.0, discharge cut-off voltage which reduces dangerous high-temperature reactions; (ii) low level of irreversibility in the first cycle by preventing the formation of a solid electrolyte interface layer; (iii) high Coulombic efficiency due to sufficient infiltration of the electrolyte and fast diffusion of Li+ ions and (iv) high rate capability. Moreover, the synthesis method reports a novel smart design of nanostructured anode electrode materials capable of overcoming the existing limitations
    corecore