120 research outputs found

    Objective automatic assessment of rehabilitative speech treatment in Parkinson's disease

    Get PDF
    Vocal performance degradation is a common symptom for the vast majority of Parkinson's disease (PD) subjects, who typically follow personalized one-to-one periodic rehabilitation meetings with speech experts over a long-term period. Recently, a novel computer program called Lee Silverman voice treatment (LSVT) Companion was developed to allow PD subjects to independently progress through a rehabilitative treatment session. This study is part of the assessment of the LSVT Companion, aiming to investigate the potential of using sustained vowel phonations towards objectively and automatically replicating the speech experts' assessments of PD subjects' voices as “acceptable” (a clinician would allow persisting during in-person rehabilitation treatment) or “unacceptable” (a clinician would not allow persisting during in-person rehabilitation treatment). We characterize each of the 156 sustained vowel /a/ phonations with 309 dysphonia measures, select a parsimonious subset using a robust feature selection algorithm, and automatically distinguish the two cohorts (acceptable versus unacceptable) with about 90% overall accuracy. Moreover, we illustrate the potential of the proposed methodology as a probabilistic decision support tool to speech experts to assess a phonation as “acceptable” or “unacceptable.” We envisage the findings of this study being a first step towards improving the effectiveness of an automated rehabilitative speech assessment tool

    Early transcriptional response in the jejunum of germ-free piglets after oral infection with virulent rotavirus

    Get PDF
    Germ-free piglets were orally infected with virulent rotavirus to collect jejunal mucosal scrapings at 12 and 18 hours post infection (two piglets per time point). IFN-gamma mRNA expression was stimulated in the mucosa of all four infected piglets, indicating that they all responded to the rotavirus infection. RNA pools prepared from two infected piglets were used to compare whole mucosal gene expression at 12 and 18 hpi to expression in uninfected germ-free piglets (n = 3) using a porcine intestinal cDNA microarray. Microarray analysis identified 13 down-regulated and 17 up-regulated genes. Northern blot analysis of a selected group of genes confirmed the data of the microarray. Genes were functionally clustered in interferon-regulated genes, proliferation/differentiation genes, apoptosis genes, cytoskeleton genes, signal transduction genes, and enterocyte digestive, absorptive, and transport genes. Down-regulation of the transport gene cluster reflected in part the loss of rotavirus-infected enterocytes from the villous tips. Data mining suggested that several genes were regulated in lower- or mid-villus immature enterocytes and goblet cells, probably to support repair of the damaged epithelial cell layer at the villous tips. Furthermore, up-regulation was observed for IFN-γ induced guanylate binding protein 2, a protein that effectively inhibited VSV and EMCV replication in vitro (Arch Virol 150:1213–1220, 2005). This protein may play a role in the small intestine’s innate defense against enteric viruses like rotavirus

    Vowel Formants in Normal and Loud Speech

    No full text
    corecore