34 research outputs found

    Chemical Profiling and in vitro Testing for PCSK9 Inhibition of Coffee Cascara Extract

    Get PDF
    Coffee cascara is a by-product generated from coffee processing. It has been discarded as an agricultural waste.  In order to reduce the environmental problems caused by coffee processing, this study aimed to investigate the effect of fresh coffee cascara extract (CCE) on the inhibition of PCSK9 which is an enzyme that can increase low-density plasma lipoprotein (LDL) cholesterol by destructing LDL receptor.  Moreover, the CCE chemical profile was identified by the thin-layer chromatography (TLC) technique together with diffusion-ordered NMR spectroscopy (DOSY). The chemical profile analysis results showed that trigonelline, caffeine, and chlorogenic acid were present in CCE, and its PCSK9 inhibitory activity screening showed that CCE at concentrations of 0.25 and 0.50 mg/mL reduced the amount of PCSK9 by 72 and 78%, respectively.  These results revealed that coffee cascara provides novel applications in the nutraceutical industry

    Teaching macromolecules and its metabolism sequentially improves learning abilityin biochemistry course of medical students

    Get PDF
    Biochemistry for medical student is a subject that focuses on structure and function of macromolecules and their metabolic pathways in living organism. This subject is quite difficult for students to understand because they have to imagine the interactions that occur in the cell at the molecular level. Learning sequence of each topic is exhibited as an important factor that may affect learning ability of students. Therefore, in this study the sequences of topics were evaluated by comparing between the parts of macromolecules either teaching separately or in combination with its metabolism sequentially. The analysis was done using the examination scores of different medical student groups at Srinakharinwirot University that studied different topic sequences. The data analysis revealed that the new topic sequence rearrangement in which each of macromolecules was taught following by its metabolic pathway was significantly better (p < 0.05) than the former sequences. This data demonstrated that the improved topic sequences are important for learning ability which will be useful for teaching development in the future

    Autophagy in the Thymic Epithelium Is Dispensable for the Development of Self-Tolerance in a Novel Mouse Model

    Get PDF
    The thymic epithelium plays critical roles in the positive and negative selection of T cells. Recently, it was proposed that autophagy in thymic epithelial cells is essential for the induction of T cell tolerance to self antigens and thus for the prevention of autoimmune diseases. Here we have tested this hypothesis using mouse models in which autophagy was blocked specifically in epithelial cells expressing keratin 14 (K14), including the precursor of thymic epithelial cells. While the thymic epithelial cells of mice carrying the floxed Atg7 gene (ATG7 f/f) showed a high level of autophagy, as determined by LC3 Western blot analysis and fluorescence detection of the recombinant green fluorescent protein (GFP)-LC3 reporter protein on autophagosomes, autophagy in the thymic epithelium was efficiently suppressed by deletion of the Atg7 gene using the Cre-loxP system (ATG7 f/f K14-Cre). Suppression of autophagy led to the massive accumulation of p62/sequestosome 1 (SQSTM1) in thymic epithelial cells. However, the structure of the thymic epithelium as well as the organization and the size of the thymus were not altered in mutant mice. The ratio of CD4 to CD8-positive T cells, as well as the frequency of activated (CD69+) CD4 T cells in lymphoid organs, did not differ between mice with autophagy-competent and autophagy-deficient thymic epithelium. Inflammatory infiltrating cells, potentially indicative of autoimmune reactions, were present in the liver, lung, and colon of a similar fraction of ATG7 f/f and ATG7 f/f K14-Cre mice. In contrast to previously reported mice, that had received an autophagy-deficient thymus transplant, ATG7 f/f K14-Cre mice did not suffer from autoimmunity-induced weight loss. In summary, the results of this study suggest that autophagy in the thymic epithelium is dispensable for negative selection of autoreactive T cells

    Antimetastatic Potential of Rhodomyrtone on Human Chondrosarcoma SW1353 Cells

    No full text
    Chondrosarcoma is primary bone cancer, with the forceful capacity to cause local invasion and distant metastasis, and has a poor prognosis. Cancer metastasis is a complication of most cancers; it is one of the leading causes of cancer-related death. Rhodomyrtone is a pure compound that has been shown to induce apoptosis and antimetastasis in skin cancer. However, the inhibitory effect of rhodomyrtone on human chondrosarcoma cell metastasis is largely unknown. Effect of rhodomyrtone on cell viability in SW1353 cell was determined by MTT assay. Antimigration, anti-invasion, and antiadhesion were carried out to investigate the antimetastatic potential of rhodomyrtone on SW1353 cells. Gelatin zymography was performed to determine matrix metalloproteinase-2 (MMP-2) and MMP-9 activities. The effect of rhodomyrtone on the underlying mechanisms was performed by Western blot analysis. The results demonstrated that rhodomyrtone reduced cell viability of SW1353 cells at the low concentration (80%. Rhodomyrtone at the subcytotoxic concentrations (0.5, 1.5, and 3 μg/mL) significantly inhibited cell migration, invasion, and adhesion of SW1353 cells in a dose-dependent fashion. Protein expression of integrin αv, integrin β3, and the downstream migratory proteins including focal adhesion kinase (FAK) and the phosphorylation of serine/threonine AKT, Ras, RhoA, Rac1, and Cdc42 were inhibited after treatment with rhodomyrtone. Moreover, we found that rhodomyrtone decreased the protein level of MMP-2 and MMP-9 as well as the enzyme activity in SW1353 cells. Meanwhile, tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 expression was increased in a dose-dependent fashion. Besides, rhodomyrtone dramatically inhibited the expression of growth factor receptor-bound protein-2 (GRB2) and the phosphorylated form of extracellular signal regulation kinase1/2 (ERK1/2) and c-Jun N-terminal kinase1/2 (JNK1/2). These results indicated that rhodomyrtone inhibited SW1353 cell migration, invasion, and metastasis by suppressing integrin αvβ3/FAK/AKT/small Rho GTPases pathway as well as downregulation of MMP-2/9 via ERK and JNK signal inhibition. These findings indicate that rhodomyrtone possessed the antimetastasis activity that may be used for antimetastasis therapy in the future

    Apoptosis Induction Associated with Enhanced ER Stress Response and Up-Regulation of c-Jun/p38 MAPK Proteins in Human Cervical Cancer Cells by <i>Colocasia esculenta</i> var. <i>aquatilis</i> Hassk Extract

    No full text
    Colocasia esculenta var. Aquatilis Hassk, elephant ear (CF-EE) has been widely used as traditional food and medicine. It also shows other therapeutic properties, such as antimicrobial and anti-cancer activity. In this study, we aim to investigate the effect of CF-EE extract on apoptosis induction associated with ER stress in cervical cancer HeLa cells. Cell viability was determined by MTT assay. Assessments of nuclear morphological changes, mitochondrial membrane potential, and intracellular reactive oxygen species (ROS) production were conducted by hoeshst33342, JC-1, and DCFH-DA fluorescence staining, respectively. Sub-G1 DNA content was analyzed by flow cytometry, and protein expression was determined by Western blotting. The results demonstrate that CF-EE extract suppressed HeLa cell growth and induced nuclear condensation and apoptotic bodies. There was also a loss of mitochondrial membrane potential and increased apoptosis marker protein expression, including Bax, cleaved-caspase-7, and cleaved-PARP. In addition, the results show that CF-EE extract induced ROS, increased ER stress proteins (GRP78 and CHOP), enhanced p38 and c-Jun phosphorylation, and inhibited Akt expression in HeLa cells. In summary, CF-EE extract induced apoptotic cell death-associated ROS-induced ER stress and the MAPK/AKT signaling pathway. Therefore, CF-EE extract has anticancer therapeutic potential for cervical cancer treatment in the future

    13-Butoxyberberine Bromide Inhibits Migration and Invasion in Skin Cancer A431 Cells

    No full text
    Cancer metastasis is the primary cause of cancer morbidity and mortality. Anti-metastasis mechanism of skin cancer by 13-butoxyberberine bromide, a novel berberine derivative, has not yet been reported. This study investigated the effects of 13-butoxyberberine bromide on migration and invasion of skin cancer A431 cells. The cytotoxicity of 13-butoxyberberine bromide was determined by MTT assay. The effect of 13-butoxyberberine bromide on cell migration and invasion were examined using a wound-healing assay, transwell migration assay, and transwell invasion assay, respectively. The cell adhesion ability was determined by an adhesion assay. Protein expressions that play important roles in cancer migration and invasion were evaluated by Western blot analysis. The results showed that 13-butoxyberberine bromide effectively inhibited cell migration, invasion, and adhesion in A431 cells. Interestingly, 13-butoxyberberine bromide was more effective for cell migration inhibition than berberine. In addition, 13-butoxyberberine bromide showed anti-migration and anti-invasion effects by down-regulated MMP-2 and MMP-9 expression and up-regulated TIMP-1 and TIMP-2 expression in A431 cells. Moreover, pretreatment with 13-butoxyberberine bromide significantly inhibited EGF-induced cell migration and p-EGFR, ERK, p-ERK, STAT3, and p-STAT3 expressions in A431 cells at lower concentrations when compared with the berberine. These findings indicated that 13-butoxyberberine bromide could be further developed as an anticancer agent

    Purple Corn Silk Extract Attenuates UVB-Induced Inflammation in Human Keratinocyte Cells

    No full text
    UVB is a causative factor for severe skin damage, such as cell aging, death, and inflammation. UVB easily permeates into the epidermis layer of human skin, which is mainly composed of keratinocyte cells. In previous results, we found that purple corn silk (PCS) extract showed the potential to inhibit keratinocyte damages of UVB-treated cells. Thus, in this study, we aimed to evaluate the preventive effects of PCS extract against the inflammation of UVB-induced keratinocyte cells using the HaCaT cell line. HaCaT cells were treated with PCS extract at various concentrations for 1 h, then exposed to 25 mJ/cm2 UVB before subsequent experiments. Fragmented DNA was observed using flow cytometry. The inflammatory response was investigated through NF-&kappa;B activity by immunofluorescence staining and related protein expression by Western blotting. The results demonstrated that PCS extract decreased the sub-G1 DNA content. Interestingly, PCS extract attenuated NF-&kappa;B activity via suppressed NF-&kappa;B nuclear translocation and protein expression. Moreover, PCS extract remarkably decreased c-Jun phosphorylation and decreased proinflammatory cytokines, along with iNOS and COX-2 levels in UVB-treated cells compared to the UVB-control group. This finding exhibited that PCS extract minimized inflammation in keratinocyte cells induced by UVB radiation

    Inhibitory effects on chondrosarcoma cell metastasis by Senna alata extract

    No full text
    Background: Senna alata L. Roxb or candle bush is a traditional medicinal plant with a wide range of biological activities including anti-inflammatory, antimicrobial and antifungal. Leaf extract of S. alata showed the anti-tumor activity in various cancer cell lines. In this study, we focused on the inhibitory mechanism of S. alata extract (SAE) on cancer metastasis including cell migration, cell invasion and signaling pathways in chondrosarcoma SW1353 cells. Purpose: This study aimed to evaluate the anti-metastatic mechanisms of Senna alata extract on chondrosarcoma SW1353 cells. Methods: Screening for phytochemicals in biologically active fraction of SAE was analysed by 1H NMR spectroscopy. Cell viability and cytoxicity were determined by using MTT assay. Cell migration was observed by scratch wound healing and transwell migration assay. Cell invasion and cell adhesion assay were examined by Matrigel coated transwell chambers or plates. The expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), MAPKs and PI3K/Akt signaling pathways and NF-κB were detected by Western blot analysis. Results: The SAE treatment at the sub-cytoxic and non-cytotoxic concentrations significantly inhibited cell migration, cell invasion and cell adhesion of SW1353 cells in a dose-dependent manner. The results from Western blot analysis showed decreased MMP-2 and MMP-9 expression, while increased TIMP-1 and TIMP-2 expression in SAE treated cells. Moreover, SAE suppressed phosphorylation of ERK1/2, p38 and Akt but decreased NF-κB transcription factor expression in SW1353 cells. Conclusion: These results revealed that SAE could reduce MMP-2 and MMP-9 expression by downregulation of NF-κB which is downstream of MAPKs and PI3K/Akt signaling pathway in SW1353 cells resulting in reduced cancer cell migration and invasion. Therefore, SAE may have the potential use as an alternative treatment of chondrosarcoma metastasis

    Purple Corn Silk Extract Attenuates UVB-Induced Inflammation in Human Keratinocyte Cells

    No full text
    UVB is a causative factor for severe skin damage, such as cell aging, death, and inflammation. UVB easily permeates into the epidermis layer of human skin, which is mainly composed of keratinocyte cells. In previous results, we found that purple corn silk (PCS) extract showed the potential to inhibit keratinocyte damages of UVB-treated cells. Thus, in this study, we aimed to evaluate the preventive effects of PCS extract against the inflammation of UVB-induced keratinocyte cells using the HaCaT cell line. HaCaT cells were treated with PCS extract at various concentrations for 1 h, then exposed to 25 mJ/cm2 UVB before subsequent experiments. Fragmented DNA was observed using flow cytometry. The inflammatory response was investigated through NF-κB activity by immunofluorescence staining and related protein expression by Western blotting. The results demonstrated that PCS extract decreased the sub-G1 DNA content. Interestingly, PCS extract attenuated NF-κB activity via suppressed NF-κB nuclear translocation and protein expression. Moreover, PCS extract remarkably decreased c-Jun phosphorylation and decreased proinflammatory cytokines, along with iNOS and COX-2 levels in UVB-treated cells compared to the UVB-control group. This finding exhibited that PCS extract minimized inflammation in keratinocyte cells induced by UVB radiation
    corecore