3,790 research outputs found
Why is solar cycle 24 an inefficient producer of high-energy particle events?
The aim of the study is to investigate the reason for the low productivity of
high-energy SEPs in the present solar cycle. We employ scaling laws derived
from diffusive shock acceleration theory and simulation studies including
proton-generated upstream Alfv\'en waves to find out how the changes observed
in the long-term average properties of the erupting and ambient coronal and/or
solar wind plasma would affect the ability of shocks to accelerate particles to
the highest energies. Provided that self-generated turbulence dominates
particle transport around coronal shocks, it is found that the most crucial
factors controlling the diffusive shock acceleration process are the number
density of seed particles and the plasma density of the ambient medium.
Assuming that suprathermal populations provide a fraction of the particles
injected to shock acceleration in the corona, we show that the lack of most
energetic particle events as well as the lack of low charge-to-mass ratio ion
species in the present cycle can be understood as a result of the reduction of
average coronal plasma and suprathermal densities in the present cycle over the
previous one
Motional Broadening in Ensembles With Heavy-Tail Frequency Distribution
We show that the spectrum of an ensemble of two-level systems can be
broadened through `resetting' discrete fluctuations, in contrast to the
well-known motional-narrowing effect. We establish that the condition for the
onset of motional broadening is that the ensemble frequency distribution has
heavy tails with a diverging first moment. We find that the asymptotic
motional-broadened lineshape is a Lorentzian, and derive an expression for its
width. We explain why motional broadening persists up to some fluctuation rate,
even when there is a physical upper cutoff to the frequency distribution.Comment: 6 pages, 4 figure
Mécanismes d'élimination de l'azote et du phosphore dans un chenal algal à haut rendement
Le devenir de l'azote(N) et du phosphore (P) a été étudié dans un chenal à haut rendement (CAHR) au cours de la période d'adaptation puis en phase stationnaire. En moyenne, la part de N total perdue atteint 34,5% du N admis en période d'adaptation et 24,5% en phase stationnaire tandis que la part assimilée par les algues atteint respectivement 32 et 43,5%. L'azote organique particulaire s'accumule dans le sédiment et subit une minéralisation lente pendant la phase d'adaptation puis rapide en phase stationnaire. Les pertes nettes en N dans le CAHR seraient dues à la sédimentation et à la volatilisation de NH3 en saison froide et seulement au dernier mécanisme, en saison chaude. Le bilan de l'azote ammoniacal en phase stationnaire montre que l'importance de la biomasse algale produite en saison chaude ne peut s'expliquer qu'en présence d'une minéralisation active du sédiment. Le taux de minéralisation est estimé à 12,4 kg N ha-1 j-1 en saison chaude contre 1,3 en saison froide. En moyenne, la part du P total perdue atteint 27% du P admis en période d'adaptation et 17,5% en phase stationnaire alors que la part assimilée par les algues atteint respectivement 25 et 17,5%. En phase stationnaire, l'élimination du P soluble dans le CAHR serait due à l'assimilation algale (54%) et à la précipitation chimique sous forme de sels de phosphates (46%).The fate of nitrogen (N) and phosphorus (P) was studied in a high-rate algal pond (HRAP) during the start-up period and under steady-state conditions. The HRAP was first used by Oswald and co-workers in Berkeley (California, USA) in the late 1950s for wastewater treatment with algae collection as a by-product for Single Cell Protein production. The HRAP consisted of a raceway shaped, shallow pond (less than 0.50 m deep) equipped with a continuous and gentle mixing device (paddle wheel) generally operated at 8 rpm. The paddle wheel is not used for aeration purposes.In this study, the HRAP is included in a wastewater treatment plant aimed at producing good quality effluent for agriculture reuse purposes. The treatment plant includes three components with the HRAP placed in the middle of the pond train. Up-stream, there is a two-phase anaerobic reactor (TAR) and downstream, two maturation ponds in series. Assigned removal tasks for the plant components are as follows: i) organic matter, suspended solids and helminth eggs for the TAR; ii) N and P for the HRAP; and iii) fecal coliforms for the two maturation ponds. The capacity of the plant is 1,500 inhabitants (70 m3/day), total hydraulic retention time is 8 days and the total occupied area is 1,500 m2 including walkways and other facilities. The plant was constructed in December 1996 and has been continuously operated since that time.The present paper focuses on the fate of N and P in the HRAP in order to evaluate its performance and to shed light on the mechanisms behind N and P removal, with the ultimate goal to improve surface and groundwater protection from pollution by wastewater nutrients. Under steady-state conditions and when we consider the soluble part of N and P taken up by the algal cells together with that lost (either by stripping or chemical precipitation), the total removal averaged 70% for N and 40% for P. Such important removal must be highlighted especially because the system relies on solar energy with no electromechanical aeration, is cheap to construct and easy to operate and maintain.To understand the mechanisms behind such a performance and also to gain experience for the process start-up and for rational operation and maintenance of future plants, an in-depth analysis on the fate of N and P was done based on the four-year follow up data. Total N losses reached an average of 34.5% in the start-up period and 24.5% under steady-state conditions, whereas N assimilated by the algae represented 32 and 43.5%, respectively. Particulate organic nitrogen (PON) accumulated in the bottom of the unit did undergo rapid mineralization under steady-state conditions. Mechanisms involved in N losses might be attributed to settling of PONr and, to much lesser extent, NH3 volatilization in the cold season, whereas the latter mechanism might occur primarily in the hot season. The rates of mineralization of HRAP sediment were estimated to be 12.4 and 1.3 kg of N ha-1 d-1 respectively for the hot and the cold season.On average, total P losses in the HRAP reach 27% in the start-up period and only 17.5 % under steady-state conditions, whereas algae assimilation represented 25 and 17.5% respectively. Under steady-state conditions, algae uptake (54%) and chemical precipitation (46%) were found to be the main mechanisms for P removal in the HRAP
C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation
Complement C1q is the activator of the classical pathway. However, it is now recognized that C1q can exert functions unrelated to complement activation. Here we show that C1q, but not C4, is expressed in the stroma and vascular endothelium of several human malignant tumours. Compared with wild-type (WT) or C3- or C5-deficient mice, C1q-deficient (C1qa(-/-)) mice bearing a syngeneic B16 melanoma exhibit a slower tumour growth and prolonged survival. This effect is not attributable to differences in the tumour-infiltrating immune cells. Tumours developing in WT mice display early deposition of C1q, higher vascular density and an increase in the number of lung metastases compared with C1qa(-/-) mice. Bone marrow (BM) chimeras between C1qa(-/-) and WT mice identify non-BM-derived cells as the main local source of C1q that can promote cancer cell adhesion, migration and proliferation. Together these findings support a role for locally synthesized C1q in promoting tumour growth
Instance search with weak geometric correlation consistency
Finding object instances from large image collections is a challenging problem with many practical applications. Recent methods inspired by text retrieval achieved good results; however a re-ranking stage based on spatial verification is still required to boost performance. To improve the effectiveness of such instance retrieval systems while avoiding the computational complexity of a re-ranking stage, we explored the geometric correlations among local features and incorporate these correlations with each individual match to form a transformation consistency in rotation and scale space. This weak geometric correlation consistency can be used to effectively eliminate inconsistent feature matches and can be applied to all candidate images at a low computational cost. Experimental results on three standard evaluation benchmarks show that the proposed approach results in a substantial performance improvement compared with recently proposed methods
Interactive known-item search using semantic textual and colour modalities
In this paper, we propose an interactive video browser tool for our participation in the fourth video search showcase event. Learning from previous experience, this year we focused on building an advanced interactive interface which allows users to quickly generate and combine different styles of query to find relevant video segments. The system offers the user a comprehensive search interface which has as key features: keyword search, color-region search and human face filtering
- …