64 research outputs found

    Effects on metabolic parameters in young rats born with low birth weight after exposure to a mixture of pesticides

    Get PDF
    Abstract Pesticide exposure during fetal life can lead to low birth weight and is commonly observed in reproductive toxicology studies. Associations have also been found in low birth weight babies born from pesticide-exposed gardeners. Since low birth weight is also linked to metabolic disorders, it can be speculated that early life exposure to pesticides could increase the risk of becoming obese or developing diabetes later in life. We have analyzed potential long-term effects of gestational and lactational exposure to a low dose mixture of six pesticides that individually can cause low birth weight: Cyromazine, MCPB, Pirimicarb, Quinoclamine, Thiram, and Ziram. Exposed male offspring, who were smaller than controls, displayed some degree of catch-up growth. Insulin and glucagon regulation was not significantly affected, and analyses of liver and pancreas did not reveal obvious histopathological effects. Efforts towards identifying potential biomarkers of metabolic disease-risk did not result in any strong candidates, albeit leptin levels were altered in exposed animals. In fat tissues, the key genes Lep, Nmb and Nmbr were altered in high dosed offspring, and were differentially expressed between sexes. Our results suggest that early-life exposure to pesticides may contribute to the development of metabolic disorders later in life

    Effects of the Commercial Flame Retardant Mixture DE-71 on Cytokine Production by Human Immune Cells

    Get PDF
    INTRODUCTION:Although production of polybrominated diphenyl ethers (PBDEs) is now banned, release from existing products will continue for many years. The PBDEs are assumed to be neurotoxic and toxic to endocrine organs at low concentrations. Their effect on the immune system has not been investigated thoroughly. We aimed to investigate the influence of DE-71 on cytokine production by peripheral blood mononuclear cells (PBMCs) stimulated with Escherichia Coli lipopolysaccharide (LPS) or phytohaemagglutinin-L (PHA-L). MATERIAL AND METHODS:PBMCs isolated from healthy donors were pre-incubated with DE-71 at various concentrations and subsequently incubated with the monocyte stimulator LPS, or the T-cell activator PHA-L. Interferon (IFN)-γ, interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor (TNF)-α, IL-17A, and IL-17F were quantified in the supernatants by Luminex kits. RESULTS:At non-cytotoxic concentrations (0.01-10 μg/mL), DE-71 significantly enhanced secretion of IL-1β, IL-6, CXCL8, IL-10, and TNF-α (p<0.001-0.019; n = 6) from LPS-stimulated PBMCs. IFN-γ, TNF-α, IL-17A, and IL-17F (p = <0.001-0.043; n = 6) secretion were enhanced from PHA-L-stimulated PBMCs as well. Secretion of IL-1β, IL-2, IL-10, IL-8 and IL-6 was not significantly affected by DE-71. CONCLUSIONS:We demonstrate an enhancing effect of DE-71 on cytokine production by normal human PBMCs stimulated with LPS or PHA-L ex vivo

    The flame retardant DE-71 (a mixture of polybrominated diphenyl ethers) inhibits human differentiated thyroid cell function <i>in vitro</i>

    Get PDF
    Normal thyroid function is essential for general growth and metabolism, but can be affected by endocrine disrupting chemicals (EDCs). Polybrominated diphenyl ethers (PBDEs) have been used worldwide to reduce flammability in different materials and are suspected to be EDCs. The production of the commercial Penta- and OctaBDE mixtures is banned, but DecaBDEs and existing products may leak PBDEs into the environment. Our aim was to investigate the effect of the PentaBDE mixture DE-71 on human thyroid cells in vitro.Primary human thyroid cells were obtained as paraadenomatous tissue and cultured in monolayers. The influence of DE-71 on cyclic adenosine monophosphate (cAMP) and thyroglobulin (Tg) production was examined in the culture medium by competitive radioimmunoassay and enzyme-linked immunosorbent assay, respectively. Real-time quantitative PCR analysis of thyroid-specific genes was performed on the exposed cell cultures. PBDE concentrations were determined in cellular and supernatant fractions of the cultures.DE-71 inhibited Tg-release from TSH-stimulated thyrocytes. At 50 mg/L DE-71, mean Tg production was reduced by 71.9% (range: 8.5-98.7%), and cAMP by 95.1% (range: 91.5-98.8%) compared to controls). Expression of mRNA encoding Tg, TPO and TSHr were significantly inhibited (p<0.0001, p = 0.0079, and p = 0.0002, respectively). The majority of DE-71 added was found in the cell fraction. No cytotoxicity was found.DE-71 inhibited differentiated thyroid cell functions in a two phase response manner and a concentration-dependent inhibition of Tg and cAMP production, respectively, as well as expression of mRNA encoding Tg, TPO and TSHr. Our findings suggest an inhibiting effect of PBDEs on thyroid cells
    • …
    corecore