71 research outputs found

    H-1 NMR study of internal motions and quantum rotational tunneling in (CH3)(4)NGeCl3

    Get PDF
    (CH3)(4)NGeCl3 is prepared, characterized and studied using H-1 NMR spin lattice relaxation time and second moment to understand the internal motions and quantum rotational tunneling. Proton second moment is measured at 7 MHz as function of temperature in the range 300-77 K and spin lattice relaxation time (T-1) is measured at two Larmor frequencies, as a function of temperature in the range 270-17 K employing a homemade wide-line/pulsed NMR spectrometers. T-1 data are analyzed in two temperature regions using relevant theoretical models. The relaxation in the higher temperatures (270-115 K) is attributed to the hindered reorientations of symmetric groups (CH3 and (CH3)(4)N). Broad asymmetric T-1 minima observed below 115 K down to 17 K are attributed to quantum rotational tunneling of the inequivalent methyl groups. Copyright (c) 2007 John Wiley & Sons, Ltd

    Study of molecular reorientation and quantum rotational tunneling in tetramethylammonium selenate by 1H NMR

    Get PDF
    1H NMR spin-lattice relaxation time measurements have been carried out in [(CH3)4N]2SeO4 in the temperature range 389-6.6 K to understand the possible phase transitions, internal motions and quantum rotational tunneling. A broad T1 minimum observed around 280 K is attributed to the simultaneous motions of CH3 and (CH3)4N groups. Magnetization recovery is found to be stretched exponential below 72 K with varying stretched exponent. Low-temperature T1 behavior is interpreted in terms of methyl groups undergoing quantum rotational tunneling. © 2007 Elsevier Inc. All rights reserved

    Pressure dependence of the chlorine NQR in three solid chloro anisoles

    Get PDF
    The 35Cl Nuclear Quadrupole Resonance (NQR) frequency (νQ) and spin lattice relaxation time (T1) in the three anisoles 2,3,4-trichloroanisole, 2,3,6-trichloroanisole and 3,5-dichloroanisole have been measured as a function of pressure upto 5.1 kbar at 300 K, and the data have been analysed to estimate the temperature coefficients of the NQR frequency at constant volume. All the three compounds show a non linear variation of the NQR frequency with pressure, the rate of which is positive and decreases with increasing pressure. In case of 3,5-dichloroanisole the value becomes negative in the higher range of pressure studied. The spin lattice relaxation time T1 in all the three compounds shows a weak dependence on pressure, indicating that the relaxation is mainly due to the torsional motions

    EPR Study of Fe 3+ - and Ni 2+ -Doped Macroporous CaSiO 3 Ceramics

    Get PDF
    Thermally stable macroporous CaSiO 3 , Fe 3+ - and Ni 2+ -doped (0.5 to 5 mol%) ceramics have been prepared by solution combustion process by mixing respective metal nitrates (oxidizers), fumed silica. Diformol hydrazine is used as a fuel. The combustion products were identified by their X-ray diffraction and thermal gravimetry/differential thermal analysis. Single phases of β-CaSiO 3 and α-CaSiO 3 were observed at 950 and 1200 °C, respectively. The phase transition temperatures of combustion-derived CaSiO 3 were found to be lower compared to those obtained via solid-state reaction method. It is interesting to note that with an increase in the calcination temperature the samples become more porous with an increase in the pore diameter from 0.2 to 8 µm. The electron paramagnetic resonance (EPR) spectrum of Fe 3+ ions in CaSiO 3 exhibits a weak signal at g = 4.20 ± 0.1 followed by an intense signal at g = 2.0 ± 0.1. The signal at g = 4.20 is ascribed to isolated Fe 3+ ions at rhombic site. The signal at g = 2.0 is due to Fe 3+ coupled together with dipolar interaction. In Ni 2+ -doped CaSiO 3 ceramics the EPR spectrum exhibits a symmetric absorption at g = 2.23 ± 0.1. This deviation from the free electron g -value is ascribed to octahedrally coordinated Ni 2+ ions with moderately high spin–orbit coupling. The number of spins participating in resonance and the paramagnetic susceptibilities have been evaluated from EPR data as a function of Fe 3+ as well as Ni 2+ content. The effect of alkali ions (Li, Na and K) on the EPR spectra of these ceramics has also been studied

    Synthesis, structural and transport properties of nanocrystalline La1−xBaxMnO3 (0.0≤x≤0.3) powders

    Get PDF
    Nanocrystalline La1−xBaxMnO3 (0.0≤x≤0.3) manganites have been prepared by a simple and instantaneous solution combustion method, which is a low temperature initiated synthetic route to obtain fine-grained powders with relatively high surface area. The phase purity and crystal structure of the combustion products are carried out by powder X-ray diffraction. The as-made nanopowders are in cubic phase. On calcination to 900 °C, barium doped manganites retain cubic phase, whereas barium free manganite transformed to rhombohedral phase. The scanning electron microscope (SEM) results revealed that the combustion-derived compounds are agglomerated with fine primary particles. The doped manganites have surface area in the range 24–44 m2/g. The surface area of the manganites increases with barium content, whereas it decreases on calcination. Both undoped and doped lanthanum manganites show two active IR vibrational modes at 400 and 600 cm−1. The low temperature resistivity measurements have been carried out by four-probe method down to 77 K. All the samples exhibit metal–insulator behaviour and metal–insulator transition temperature (TM–I) in the range 184–228 K and it is interesting to note that, as the barium content increases the TM–I shifts to lower temperature side. The maximum TM–I of 228 K is observed for La0.9Ba0.1MnO3 sample
    corecore