18 research outputs found

    Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. The molecular mechanisms involved in the pathophysiology of IPF are incompletely defined. Several lung cell types including alveolar epithelial cells, fibroblasts, monocyte-derived macrophages, and endothelial cells have been implicated in the development and progression of fibrosis. Regardless of the cell types involved, changes in gene expression, disrupted glycolysis, and mitochondrial oxidation, dysregulated protein folding, and altered phospholipid and sphingolipid metabolism result in activation of myofibroblast, deposition of extracellular matrix proteins, remodeling of lung architecture and fibrosis. Lipid mediators derived from phospholipids, sphingolipids, and polyunsaturated fatty acids play an important role in the pathogenesis of pulmonary fibrosis and have been described to exhibit pro- and anti-fibrotic effects in IPF and in preclinical animal models of lung fibrosis. This review describes the current understanding of the role and signaling pathways of prostanoids, lysophospholipids, and sphingolipids and their metabolizing enzymes in the development of lung fibrosis. Further, several of the lipid mediators and enzymes involved in their metabolism are therapeutic targets for drug development to treat IPF

    MiR-20a regulates the PRKG1 gene by targeting its coding region in pulmonary arterial smooth muscle cells

    Get PDF
    AbstractChronic hypoxia triggers pulmonary vascular remodeling, which is associated with de-differentiation of pulmonary artery smooth muscle cells (PASMC). Here, we show that miR-20a expression is up-regulated in response to hypoxia in both mouse and human PASMC. We also observed that miR-20a represses the protein kinase, cGMP-dependent, type I (PRKG1) gene and we identified two crucial miR-20a binding sites within the coding region of PRKG1. Functional studies showed that miR-20a promotes the proliferation and migration of human PASMC, whereas it inhibits their differentiation. In summary, we provided a possible mechanism by which hypoxia results in decreased PRKG1 expression and in the phenotypic switching of PASMC

    MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration

    No full text
    Hypoxia stimulates pulmonary artery smooth muscle cell (PASMC) proliferation. Recent studies have implicated an important role for microRNAs (miRNAs) in hypoxia-mediated responses in various cellular processes, including cell proliferation. In this study, we investigated the role of microRNA-21 (miR-21) in hypoxia-induced PASMC proliferation and migration. We first demonstrated that miR-21 expression increased by ∼3-fold in human PASMC after 6 h of hypoxia (3% O2) and remained high (∼2-fold) after 24 h of hypoxia. Knockdown of miR-21 with anti-miR-21 inhibitors significantly reduced hypoxia-induced cell proliferation, whereas miR-21 overexpression in normoxia enhanced cell proliferation. We also found that miR-21 is essential for hypoxia-induced cell migration. Protein expression of miR-21 target genes, specifically programmed cell death protein 4 (PDCD4), Sprouty 2 (SPRY2), and peroxisome proliferator-activated receptor-α (PPARα), was decreased in hypoxia and in PASMC overexpressing miR-21 in normoxia and increased in hypoxic cells in which miR-21 was knocked down. In addition, PPARα 3′-untranslated region (UTR) luciferase-based reporter gene assays demonstrated that PPARα is a direct target of miR-21. Taken together, our findings indicate that miR-21 plays a significant role in hypoxia-induced pulmonary vascular smooth muscle cell proliferation and migration by regulating multiple gene targets

    NOX4 Mediates Pseudomonas aeruginosa-Induced Nuclear Reactive Oxygen Species Generation and Chromatin Remodeling in Lung Epithelium

    No full text
    Pseudomonas aeruginosa (PA) infection increases reactive oxygen species (ROS), and earlier, we have shown a role for NADPH oxidase-derived ROS in PA-mediated lung inflammation and injury. Here, we show a role for the lung epithelial cell (LEpC) NOX4 in PA-mediated chromatin remodeling and lung inflammation. Intratracheal administration of PA to Nox4flox/flox mice for 24 h caused lung inflammatory injury; however, epithelial cell-deleted Nox4 mice exhibited reduced lung inflammatory injury, oxidative stress, secretion of pro-inflammatory cytokines, and decreased histone acetylation. In LEpCs, NOX4 was localized both in the cytoplasmic and nuclear fractions, and PA stimulation increased the nuclear NOX4 expression and ROS production. Downregulation or inhibition of NOX4 and PKC δ attenuated the PA-induced nuclear ROS. PA-induced histone acetylation was attenuated by Nox4-specific siRNA, unlike Nox2. PA stimulation increased HDAC1/2 oxidation and reduced HDAC1/2 activity. The PA-induced oxidation of HDAC2 was attenuated by N-acetyl-L-cysteine and siRNA specific for Pkc δ, Sphk2, and Nox4. PA stimulated RAC1 activation in the nucleus and enhanced the association between HDAC2 and RAC1, p-PKC δ, and NOX4 in LEpCs. Our results revealed a critical role for the alveolar epithelial NOX4 in mediating PA-induced lung inflammatory injury via nuclear ROS generation, HDAC1/2 oxidation, and chromatin remodeling
    corecore