45 research outputs found

    Seizure protein 6 controls glycosylation and trafficking of kainate receptor subunits GluK2 and GluK3

    Get PDF
    Seizure protein 6 (SEZ6) is required for the development and maintenance of the nervous system, is a major substrate of the protease BACE1 and is linked to Alzheimer's disease (AD) and psychiatric disorders, but its molecular functions are not well understood. Here, we demonstrate that SEZ6 controls glycosylation and cell surface localization of kainate receptors composed of GluK2/3 subunits. Loss of SEZ6 reduced surface levels of GluK2/3 in primary neurons and reduced kainate-evoked currents in CA1 pyramidal neurons in acute hippocampal slices. Mechanistically, loss of SEZ6 in vitro and in vivo prevented modification of GluK2/3 with the human natural killer-1 (HNK-1) glycan, a modulator of GluK2/3 function. SEZ6 interacted with GluK2 through its ectodomain and promoted post-endoplasmic reticulum transport of GluK2 in the secretory pathway in heterologous cells and primary neurons. Taken together, SEZ6 acts as a new trafficking factor for GluK2/3. This novel function may help to better understand the role of SEZ6 in neurologic and psychiatric diseases

    Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering

    Get PDF
    The need to develop and improve sustainable energy resources is of eminent importance due to the finite nature of our fossil fuels. This review paper deals with a third generation renewable energy resource which does not compete with our food resources, cyanobacteria. We discuss the current state of the art in developing different types of bioenergy (ethanol, biodiesel, hydrogen, etc.) from cyanobacteria. The major important biochemical pathways in cyanobacteria are highlighted, and the possibility to influence these pathways to improve the production of specific types of energy forms the major part of this review

    Theoretical and experimental investigation of the magnetic properties of polyvinylidene fluoride and magnetite nanoparticles-based nanocomposites

    No full text
    Abstract In the present study, the effect of size distribution of magnetite nanoparticles in a PVDF matrix on the magnetic properties of PVDF + Fe3O4 nanocomposites was experimentally and theoretically investigated. The size distribution of nanoparticles in polymer matrix and morphology of the nanocomposites were studied by the means of scanning electron microscopy and atomic force microscopy. It was found that when the Fe3O4 nanoparticles are introduced into the polymer matrix, their coagulation takes place. The increase in the size of the particles depends on their concentration in the polymer matrix, the type of polymer (polar, non-polar, its viscosity, etc.), reaction temperatures, etc. In addition, when Fe3O4 nanoparticles are introduced into the polymer network, the oxidation of the surface layer of particles occurs and the magnetic size decreases. Consequently, the reduced magnetic properties may also be observed. The hysteresis loops have been recorded in small magnetic field range. It was found that the magnetic hysteresis parameters depend on the size and concentration of Fe3O4 nanoparticles. Theoretical calculations were compared with experimental results obtained from M(H) measurements. The reasons of differences between theoretical and experimental results have been explained

    The influence of magnetite nanoparticles on dielectric properties of metaloxide- polymer based nanocomposite

    No full text
    The structure and dielectric properties of the nanocompositewere investigated. The dispersion of the magnetite nanopartcles in polymer matrix was studied by scanning electron microscope(SEM, Carl Zeiss). The dielectric properties of composite materials were examined by means of E7-21 impedancespectrometre in the frequency range of 10(2) Hs -10(6)Hs and over the temperature range of298 degrees-433 degrees K. It was shown that the introduction of magnetite (Fe3O4) nanoparticles into the polypropylene matrix increases the dielectric permittivity of nanocomposites. It was found that the decrease in the resistivity up to 318 K is associated with increasing ionic conductivity of the nanocomposite
    corecore