2 research outputs found

    Current stage of studies of the star configurations at intermediate energies with the use of the BINA detector

    No full text
    The Space Star Anomaly in proton-deuteron breakup cross-section occurs at energies of about 10 MeV. Data for higher energies are sparse. Therefore, a systematic scan over star configurations in the range of intermediate energies between 50 and 100 MeV/nucleon is carried out on the basis of data collected with the large acceptance BINA detector. The preliminary cross section results for forward star configurations at 80 MeV/nucleon slightly surpass the theoretical calculations, but the systematic uncertainties are still under study. Also, a new variable describing rotation of star configurations is proposed

    Determination of phase space region for cross-check validation of the neutron detection in the BINA experiments

    Get PDF
    Deuteron breakup reactions are basic laboratories for testing nuclear force models. Recent improvements in the data analysis allow for direct identification of neutrons in the BINA detection setup. This opens up the opportunity to study new aspects of few-nucleon system dynamics like charge dependence of nuclear force or Coulomb interaction. In this paper we determine regions along the kinematical curves where differential cross section of deuteron-proton breakup reactions can be measured by the proton-neutron and proton-proton coincidences simultaneously. This is particularly useful for validation of the neutron detection technique
    corecore