2,564 research outputs found

    Airborne laser sensors and integrated systems

    Get PDF
    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the development of such requirements, useful guidelines are provided for test and evaluation of airborne laser systems including laboratory, ground and flight test activities

    Advanced flight management system for an unmanned reusable space vehicle

    Get PDF
    The innovative architecture of an advanced Flight Management System (FMS) for Unmanned Reusable Space Vehicle (URSV) applications is presented with the associated re-entry trajectory computation algorithm. The SL-12 unmanned space vehicle, developed by Cranfield University as a part of the 2012-2013 Aerospace Vehicle Design (AVD) Group Design Project (GDP) is used as the reference platform. The overall avionics architecture of the future space transportation vehicle is described. A detailed architecture is developed for the FMS and the core functions of such an FMS are described. A dedicated computation algorithm is presented for re-entry trajectory planning, which involves determination of the path of re-entry vehicle by means of angle of attack and bank angle modulation. Simulation case studies are performed in a realistic re-entry operational scenario resulting in the generation of efficient and feasible trajectories, without violating any of the defined constraints

    PCV107 PATIENT ADHERENCE TO CHRONIC DISEASE MEDICATIONS IN A MEDICATION THERAPY MANAGEMENT PROGRAM

    Get PDF

    Reverse engineering of a fixed wing unmanned aircraft 6-DoF model for navigation and guidance applications

    Get PDF
    A method for deriving the parameters of a six-degree-of-freedom (6-DoF) aircraft dynamics model by adopting reverse engineering techniques is presented. The novelty of the paper is the adaption of the 6-DoF Aircraft Dynamics Model (ADM) as a virtual sensor integrated in a low-cost navigation and guidance system designed for small Unmanned Aircraft (UA). The mass and aerodynamic properties of the JAVELIN UA are determined with the aid of an accurate 3D scanning and CAD processing. For qualitatively assessing the calculated ADM, a trajectory with high dynamics is simulated for the JAVELIN UA and compared with that of a published 6-DoF model of the AEROSONDE UA. Additionally, to confirm the validity of the approach, reverse engineering procedures are applied to a published CAD model of the AEROSONDE UA aiding to the calculation of the associated 6-DoF model parameters. A spiral descent trajectory is generated using both the published and calculated parameters of the AEROSONDE UA and a comparative analysis is performed that validates the methodology. The accurate knowledge of the ADM is then utilised in the development of a virtual sensor to augment the UA navigation and guidance system in case of primary navigation sensor outages

    Automated ATM system enabling 4DT-based operations

    Get PDF
    As part of the current initiatives aimed at enhancing safety, efficiency and environmental sustainability of aviation, a significant improvement in the efficiency of aircraft operations is currently pursued. Innovative Communication, Navigation, Surveillance and Air Traffic Management (CNS/ATM) technologies and operational concepts are being developed to achieve the ambitious goals for efficiency and environmental sustainability set by national and international aviation organizations. These technological and operational innovations will be ultimately enabled by the introduction of novel CNS/ATM and Avionics (CNS+A) systems, featuring higher levels of automation. A core feature of such systems consists in the real-time multi-objective optimization of flight trajectories, incorporating all the operational, economic and environmental aspects of the aircraft mission. This article describes the conceptual design of an innovative ground-based Air Traffic Management (ATM) system featuring automated 4-Dimensional Trajectory (4DT) functionalities. The 4DT planning capability is based on the multi-objective optimization of 4DT intents. After summarizing the concept of operations, the top-level system architecture and the key 4DT optimization modules, we discuss the segmentation algorithm to obtain flyable and concisely described 4DT. Simulation case studies in representative scenarios show that the adopted algorithms generate solutions consistently within the timeframe of online tactical rerouting tasks, meeting the set design requirements

    A low-cost vision based navigation system for small size unmanned aerial vehicle applications

    Get PDF
    Not availabl

    Novel ATM and avionic systems for environmentally sustainable aviation

    Get PDF
    Large-scale air transport modernisation initiatives including the Single European Sky Air Traffic Management Research (SESAR), Next Generation Air Transportation System (NextGen) and Clean Sky Joint Technology Initiative for Aeronautics and Air Transport aim to improve the operational efficiency, safety and environmental sustainability of aviation. Scientific advances in Air Transport Management (ATM) and avionic systems are required to achieve the ambitious goals set by national and international aviation organisations. This paper presents the recent advances in ATM and avionic system concepts, integrated architectures and trajectory generation algorithms, to be adopted in Next Generation Avionics Flight Management Systems (NG-FMS) and ground-based 4-Dimensional Trajectory Planning, Negotiation and Validation (4-PNV) systems. Current research efforts are focussed on the development of NG-FMS and 4-PNV systems for Four Dimensional (4D) Trajectory/Intent Based Operations (TBO/IBO), enabling automated negotiation and validation of aircraft intents and thus alleviating the workload of operators. After describing the NG-FMS/4PNV concept of operations, the overall system architecture and the key mathematical models describing the 4DT optimisation algorithms are introduced. Simulation case studies utilising realistic operational scenarios highlight the generation and optimisation of a family of 4DT intents by the NG-FMS corresponding to a set of performance weightings agreed between Air Navigation Service Providers (ANSP) and Airline Operation Centres (AOC). The savings on time, fuel burn and gaseous emissions (CO2 and NOx) associated with the globally optimal 4DT intents are presented. The developed optimisation and negotiation/validation loops meet the timeframe requirements of typical online tactical routing/rerouting tasks

    Groundwater Geochemistry of Neyveli Lignite Mine-Industrial Complex, Tamil Nadu, India and Its Suitability for Irrigation

    Get PDF
    This study was undertaken to assess the quality of groundwater for irrigation and level of trace metal concentration in the surface and groundwater bodies from Neyveli lignite mine-industrial complex which is located in Cuddalore district, Tamil Nadu, India. The hydrogeology of the Neyveli groundwater basin is extremely complex, consisting of a series of productive, confined aquifers below the lignite seam in both Mine I and II areas, while a semi-confined aquifer lies above the seam and occurs only in the Mine II area. The suitability of groundwater quality for agricultural purposes in and around Neyveli lignite mine-industrial complex was assessed by measuring physicochemical parameters, including major cation and anion compositions, pH, total dissolved solids, electrical conductivity, and trace metals. The results of the chemical analysis of the groundwater showed that concentrations of ions vary widely and the most prevalent water type is mixed CaNaHCO3, followed by other water types: mixed CaMgCl types and NaCl which is in relation with their interactions with the geological formations of the basin, dissolution of feldspars and chloride and bicarbonate minerals, and anthropogenic activities. The most dominant class is C1-S1, C2-S1 (85% PRM and 74% POM) in the study area, indicating that sodicity is very low and salinity is medium, and that these waters are suitable for irrigation in almost all soils.Based on sodium absorption ratio the groundwater of the study area is suitable for all types of crops and soil except for those crops sensitive to Na and based RSC values of the groundwater, considered safe. Based on the parameters such as TDS, EC, SO4, Cl and Wilcox diagram about 99% of samples are suitable for irrigation. The average concentration of trace metals (Fe, Mn, Cr, Zn, Pb, and Cu) in groundwater samples fall within the permissible limit, with the exception of Ni which is recorded higher than the permissible limit which may retard growth and metabolic activities while the groundwater used for irrigation

    Taj Mahal – An Appraisal of Foundation Performance

    Get PDF
    Because of severe restrictions placed by the National Authority, no authentic data on subsoil details below Taj Mahal - a protected monument - is available. For the first time, an attempt has been made to fill in gaps that exist in our knowledge of subsoil profile below the structure and present a plausible appraisal of foundation performance during the existence of the structure. Since details of foundations cited in literature on Taj Mahal really fall into the realms of architectural conjecture, in the present analysis, engineering intuition and judgement have gone into making certain premises regarding the probable type, dimensions and the depth of the existing foundations of Taj Mahal. These premises, complimented by borehole data and laboratory tests have enabled the assessment of the foundation performance to be made in as realistic a manner as is practically possible

    Wide Band Gap Devices and Their Application in Power Electronics

    Get PDF
    Power electronic systems have a great impact on modern society. Their applications target a more sustainable future by minimizing the negative impacts of industrialization on the environment, such as global warming effects and greenhouse gas emission. Power devices based on wide band gap (WBG) material have the potential to deliver a paradigm shift in regard to energy efficiency and working with respect to the devices based on mature silicon (Si). Gallium nitride (GaN) and silicon carbide (SiC) have been treated as one of the most promising WBG materials that allow the performance limits of matured Si switching devices to be significantly exceeded. WBG-based power devices enable fast switching with lower power losses at higher switching frequency and hence, allow the development of high power density and high efficiency power converters. This paper reviews popular SiC and GaN power devices, discusses the associated merits and challenges, and finally their applications in power electronics
    • …
    corecore