197 research outputs found

    Laser Tomography Adaptive Optics (LTAO): A performance study

    Full text link
    We present an analytical derivation of the on-axis performance of Adaptive Optics systems using a given number of guide stars of arbitrary altitude, distributed at arbitrary angular positions in the sky. The expressions of the residual error are given for cases of both continuous and discrete turbulent atmospheric profiles. Assuming Shack-Hartmann wavefront sensing with circular apertures, we demonstrate that the error is formally described by integrals of products of three Bessel functions. We compare the performance of Adaptive Optics correction when using natural, Sodium or Rayleigh laser guide stars. For small diameter class telescopes (~5m), we show that a few number of Rayleigh beacons can provide similar performance to that of a single Sodium laser, for a lower overall cost of the instrument. For bigger apertures, using Rayleigh stars may not be such a suitable alternative because of the too severe cone effect that drastically degrades the quality of the correction.Comment: accepted for publication in JOS

    Development of a scalable generic platform for adaptive optics real time control

    Full text link
    The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (AO) system, the generation of the Deformable Mirror (DM) control voltages from the Wavefront Sensor (WFS) measurements is usually through the multiplication of the wavefront slopes with a predetermined reconstructor matrix. The ability to access several hundred hard multipliers and memories concurrently in an FPGA allows performance far beyond that of a modern CPU or GPU for tasks with a well defined structure such as Adaptive Optics control. The target of the current project is to generate a signal for a real time wavefront correction, from the signals coming from a Wavefront Sensor, wherein the system would be flexible to accommodate all the current Wavefront Sensing techniques and also the different methods which are used for wavefront compensation. The system should also accommodate for different data transmission protocols (like Ethernet, USB, IEEE 1394 etc.) for transmitting data to and from the FPGA device, thus providing a more flexible platform for Adaptive Optics control. Preliminary simulation results for the formulation of the platform, and a design of a fully scalable slope computer is presented.Comment: Paper presented as part of SPIE ICOP 2015 Conference Proceeding

    An Imaging Polarimeter(IMPOL) for multi-wavelength observations

    Get PDF
    Taking advantage of the advances in array detector technology, an imaging polarimeter (IMPOL) has been constructed for measuring linear polarization in the wavelength band from 400-800 nm. It makes use of a Wollaston prism as the analyser to measure simultaneously the two orthogonal polarization components that define a Stoke's parameter. An achromatic half-wave plate is used to rotate the plane of polarization with respect to the axis of the analyser so that the second Stoke's parameter also can be determined. With a field of view correponding to about 30x30 sq. mm for a 1.2 m, f/13 telescope, a sensitive, liquid-nitrogen cooled CCD camera as the detector and a built-in acquisition and guidance unit, the instrument can be used for studying stellar fields or extended objects with an angular resolution close to 2 arcsec. The instrumental polarization is less than 0.05% and the accuracies of measurement are primarily limited by photon noise for typical observations.Comment: 10 pages including 5 embedded figures; submitted to Astronomy and Astrophysics Supplement Series; available on request to A. N. Ramaprakash ([email protected] or [email protected]); quote report n

    Cyclic edge extensions-self centered graphs

    Get PDF
    The eccentricity e(u) of a vertex u is the maximum distance of u to any other vertex of G. The maximum and the minimum eccentricity among the vertices of a graph G are known as the diameter and the radius of G respectively. If they are equal then the graph is said to be a self - centered graph. Edge addition /extension to a graph either retains or changes the parameter of a graph, under consideration. In this paper mainly, we consider edge extension for cycles, with respect to the self-centeredness(of cycles),that is, after an edge set is added to a self centered graph the resultant graph is also a self-centered graph. Also, we have other structural results for graphs with edge -extensions

    Edge Jump Distance Graphs

    Get PDF
    The concept of edge jump between graphs and distance between graphs was introduced by Gary Chartrand et al. in [5]. A graph H is obtained from a graph G by an edge jump if G contains four distinct vertices u, v, w, and x such that uv belongs to  E(G), wx does not belong to E(G) and H isomorphic to G ¢â‚¬uv + wx. The concept of edge rotations and distance between graphs was first introduced by Chartrand et.al [4]. A graph H is said to be obtained from a graph G by a single edge rotation if G contains three distinct vertices u, v, and w such that uv belongs to \ ‚ E(G) and uw does not belong to ‚ E(G). If a graph H is obtained from a graph G by a sequence of edge jumps, then G is said to be j-transformed into H. In this paper we consider edge jumps on generalized Petersen graphs Gp(n,1) and cycles. We have also developed an algorithm that gives self-centered graphs and almost self-centered graphs through edge jumps followed by some general results on edge jum &nbsp

    On Some Edge Rotation Distance Graphs

    Get PDF
    The concept of edge rotations and distance between graphs was introduced by Gary Chartrand et.al [1].A graph G can be transformed into a graph H by an edge rotation if G contains distinct vertices u, v and w such uvE(G) and uwE(G) and H G uv uw . In this case, G is transformed into H by” rotating” the edge uv of G into uw. In this paper we consider rotations on generalized Petersen graphs and minimum selfcenteredgraphs. We have also developed algorithms to generate distance degree injective (DDI) graphs and almost distance degree injective (ADDI) graphs from cycles using the concept of rotations followed by some general results

    A Study of starless dark cloud LDN 1570: Distance, Dust properties and Magnetic field geometry

    Full text link
    We wish to map the magnetic field geometry and to study the dust properties of the starless cloud, L1570, using multi-wavelength optical polarimetry and photometry of the stars projected on the cloud. We made R-band imaging polarimetry of the stars projected on a cloud, L1570, to trace the magnetic field orientation. We also made multi-wavelength polarimetric and photometric observations to constrain the properties of dust in L1570. We estimated a distance of 394 +/- 70 pc to the cloud using 2MASS JHKs colours. Using the values of the Serkowski parameters namely σ1\sigma_{1}, ϵˉ\bar \epsilon, {\lambda}max and the position of the stars on near infrared color-color diagram, we identified 13 stars that could possibly have intrinsic polarization and/or rotation in their polarization angles. One star, 2MASS J06075075+1934177, which is a B4Ve spectral type, show the presence of diffuse interstellar bands in the spectrum apart from showing H{\alpha} line in emission. There is an indication for the presence of slightly bigger dust grains towards L1570 on the basis of the dust grain size-indicators such as {\lambda}max and Rv values. The magnetic field lines are found to be parallel to the cloud structures seen in the 250{\mu}m images (also in 8{\mu}m and 12{\mu}m shadow images) of L1570. Based on the magnetic field geometry, the cloud structure and the complex velocity structure, we believe that L1570 is in the process of formation due to the converging flow material mediated by the magnetic field lines. Structure function analysis showed that in the L1570 cloud region the large scale magnetic fields are stronger when compared with the turbulent component of magnetic fields. The estimated magnetic field strengths suggest that the L1570 cloud region is sub-critical and hence could be strongly supported by the magnetic field lines.Comment: 26 pages, 22 figures, and 7 tables; Accepted for its publication in A&
    corecore