159 research outputs found

    Control Words of String Rewriting P Systems

    Get PDF
    P systems with controlled computations have been introduced and investigated in the recent past, by assigning labels to the rules in the regions of the P system and guiding the computations by control words. Here we consider string rewriting cell-like transition P system with label assigned rules working in acceptor mode and compare the obtained family of languages of control words over the rule labels with certain well-known language families. An application to chain code picture generation is also pointed out

    The Geometrodynamics of Sine-Gordon Solitons

    Get PDF
    The relationship between N-soliton solutions to the Euclidean sine-Gordon equation and Lorentzian black holes in Jackiw-Teitelboim dilaton gravity is investigated, with emphasis on the important role played by the dilaton in determining the black hole geometry. We show how an N-soliton solution can be used to construct ``sine-Gordon'' coordinates for a black hole of mass M, and construct the transformation to more standard ``Schwarzchild-like'' coordinates. For N=1 and 2, we find explicit closed form solutions to the dilaton equations of motion in soliton coordinates, and find the relationship between the soliton parameters and the black hole mass. Remarkably, the black hole mass is non-negative for arbitrary soliton parameters. In the one-soliton case the coordinates are shown to cover smoothly a region containing the whole interior of the black hole as well as a finite neighbourhood outside the horizon. A Hamiltonian analysis is performed for slicings that approach the soliton coordinates on the interior, and it is shown that there is no boundary contribution from the interior. Finally we speculate on the sine-Gordon solitonic origin of black hole statistical mechanics.Comment: Latex, uses epsf, 30 pages, 6 figures include

    The Statistical Mechanics of the (2+1)-Dimensional Black Hole

    Get PDF
    The presence of a horizon breaks the gauge invariance of (2+1)-dimensional general relativity, leading to the appearance of new physical states at the horizon. I show that the entropy of the (2+1)-dimensional black hole can be obtained as the logarithm of the number of these microscopic states.Comment: 12 pages, UCD-94-32 and NI-9401

    Fluctuations of elastic interfaces in fluids: Theory and simulation

    Full text link
    We study the dynamics of elastic interfaces-membranes-immersed in thermally excited fluids. The work contains three components: the development of a numerical method, a purely theoretical approach, and numerical simulation. In developing a numerical method, we first discuss the dynamical coupling between the interface and the surrounding fluids. An argument is then presented that generalizes the single-relaxation time lattice-Boltzmann method for the simulation of hydrodynamic interfaces to include the elastic properties of the boundary. The implementation of the new method is outlined and it is tested by simulating the static behavior of spherical bubbles and the dynamics of bending waves. By means of the fluctuation-dissipation theorem we recover analytically the equilibrium frequency power spectrum of thermally fluctuating membranes and the correlation function of the excitations. Also, the non-equilibrium scaling properties of the membrane roughening are deduced, leading us to formulate a scaling law describing the interface growth, W^2(L,T)=L^3 g[t/L^(5/2)], where W, L and T are the width of the interface, the linear size of the system and the temperature respectively, and g is a scaling function. Finally, the phenomenology of thermally fluctuating membranes is simulated and the frequency power spectrum is recovered, confirming the decay of the correlation function of the fluctuations. As a further numerical study of fluctuating elastic interfaces, the non-equilibrium regime is reproduced by initializing the system as an interface immersed in thermally pre-excited fluids.Comment: 15 pages, 11 figure

    Beyond series expansions: mathematical structures for the susceptibility of the square lattice Ising model

    Full text link
    We first study the properties of the Fuchsian ordinary differential equations for the three and four-particle contributions χ(3) \chi^{(3)} and χ(4) \chi^{(4)} of the square lattice Ising model susceptibility. An analysis of some mathematical properties of these Fuchsian differential equations is sketched. For instance, we study the factorization properties of the corresponding linear differential operators, and consider the singularities of the three and four-particle contributions χ(3) \chi^{(3)} and χ(4) \chi^{(4)}, versus the singularities of the associated Fuchsian ordinary differential equations, which actually exhibit new ``Landau-like'' singularities. We sketch the analysis of the corresponding differential Galois groups. In particular we provide a simple, but efficient, method to calculate the so-called ``connection matrices'' (between two neighboring singularities) and deduce the singular behaviors of χ(3) \chi^{(3)} and χ(4) \chi^{(4)}. We provide a set of comments and speculations on the Fuchsian ordinary differential equations associated with the n n-particle contributions χ(n) \chi^{(n)} and address the problem of the apparent discrepancy between such a holonomic approach and some scaling results deduced from a Painlev\'e oriented approach.Comment: 21 pages Proceedings of the Counting Complexity conferenc

    Solid stress facilitates spheroid formation: potential involvement of hyaluronan

    Get PDF
    When neoplastic cells grow in confined spaces in vivo, they exert a finite force on the surrounding tissue resulting in the generation of solid stress. By growing multicellular spheroids in agarose gels of defined mechanical properties, we have recently shown that solid stress inhibits the growth of spheroids and that this growth-inhibiting stress ranges from 45 to 120 mmHg. Here we show that solid stress facilitates the formation of spheroids in the highly metastatic Dunning R3327 rat prostate carcinoma AT3.1 cells, which predominantly do not grow as spheroids in free suspension. The maximum size and the growth rate of the resulting spheroids decreased with increasing stress. Relieving solid stress by enzymatic digestion of gels resulted in gradual loss of spheroidal morphology in 8 days. In contrast, the low metastatic variant AT2.1 cells, which grow as spheroids in free suspension as well as in the gels, maintained their spheroidal morphology even after stress removal. Histological examination revealed that most cells in AT2.1 spheroids are in close apposition whereas a regular matrix separates the cells in the AT3.1 gel spheroids. Staining with the hyaluronan binding protein revealed that the matrix between AT3.1 cells in agarose contained hyaluronan, while AT3.1 cells had negligible or no hyaluronan when grown in free suspension. Hyaluronan was found to be present in both free suspensions and agarose gel spheroids of AT2.1. We suggest that cell–cell adhesion may be adequate for spheroid formation, whereas solid stress may be required to form spheroids when cell–matrix adhesion is predominant. These findings have significant implications for tumour growth, invasion and metastasis

    Prayers to Kāli: practicing radical numinosity

    Get PDF
    Prayers to Kāli is an invocation of the radical-sacred as a way into decolonization, liberation, and healing. The radical-sacred, as I conceive of it, is broadly to do with the work of retrieving our spiritual dimensions as an inextricable part of queer, and decolonial futurities. The construction and performance of decolonial, queer-feminist theory, and knowledge discourses as fundamentally located in communities of coalition, new modes of resistance and cosmologies, form the theoretical foil of this paper. The broader aim of the paper is to highlight the significance of spiritual, corporeal, and emotional knowledges in the work of decoloniality and dismantling systems of oppression. I locate this exploration within the narrative specifics of contemporary spirit- poetry from Tamil Nadu; a radical, border site where these connections and dimensions of decoloniality, gender, desire, and resistance play out

    On the asymptotics of higher-dimensional partitions

    Full text link
    We conjecture that the asymptotic behavior of the numbers of solid (three-dimensional) partitions is identical to the asymptotics of the three-dimensional MacMahon numbers. Evidence is provided by an exact enumeration of solid partitions of all integers <=68 whose numbers are reproduced with surprising accuracy using the asymptotic formula (with one free parameter) and better accuracy on increasing the number of free parameters. We also conjecture that similar behavior holds for higher-dimensional partitions and provide some preliminary evidence for four and five-dimensional partitions.Comment: 30 pages, 8 tables, 4 figures (v2) New data (63-68) for solid partitions added; (v3) published version, new subsection providing an unbiased estimate of the leading for the leading coefficient added, some tables delete

    Domain Organization of Long Signal Peptides of Single-Pass Integral Membrane Proteins Reveals Multiple Functional Capacity

    Get PDF
    Targeting signals direct proteins to their extra - or intracellular destination such as the plasma membrane or cellular organelles. Here we investigated the structure and function of exceptionally long signal peptides encompassing at least 40 amino acid residues. We discovered a two-domain organization (“NtraC model”) in many long signals from vertebrate precursor proteins. Accordingly, long signal peptides may contain an N-terminal domain (N-domain) and a C-terminal domain (C-domain) with different signal or targeting capabilities, separable by a presumably turn-rich transition area (tra). Individual domain functions were probed by cellular targeting experiments with fusion proteins containing parts of the long signal peptide of human membrane protein shrew-1 and secreted alkaline phosphatase as a reporter protein. As predicted, the N-domain of the fusion protein alone was shown to act as a mitochondrial targeting signal, whereas the C-domain alone functions as an export signal. Selective disruption of the transition area in the signal peptide impairs the export efficiency of the reporter protein. Altogether, the results of cellular targeting studies provide a proof-of-principle for our NtraC model and highlight the particular functional importance of the predicted transition area, which critically affects the rate of protein export. In conclusion, the NtraC approach enables the systematic detection and prediction of cryptic targeting signals present in one coherent sequence, and provides a structurally motivated basis for decoding the functional complexity of long protein targeting signals
    corecore