1,180 research outputs found

    Breaking Instance-Independent Symmetries In Exact Graph Coloring

    Full text link
    Code optimization and high level synthesis can be posed as constraint satisfaction and optimization problems, such as graph coloring used in register allocation. Graph coloring is also used to model more traditional CSPs relevant to AI, such as planning, time-tabling and scheduling. Provably optimal solutions may be desirable for commercial and defense applications. Additionally, for applications such as register allocation and code optimization, naturally-occurring instances of graph coloring are often small and can be solved optimally. A recent wave of improvements in algorithms for Boolean satisfiability (SAT) and 0-1 Integer Linear Programming (ILP) suggests generic problem-reduction methods, rather than problem-specific heuristics, because (1) heuristics may be upset by new constraints, (2) heuristics tend to ignore structure, and (3) many relevant problems are provably inapproximable. Problem reductions often lead to highly symmetric SAT instances, and symmetries are known to slow down SAT solvers. In this work, we compare several avenues for symmetry breaking, in particular when certain kinds of symmetry are present in all generated instances. Our focus on reducing CSPs to SAT allows us to leverage recent dramatic improvement in SAT solvers and automatically benefit from future progress. We can use a variety of black-box SAT solvers without modifying their source code because our symmetry-breaking techniques are static, i.e., we detect symmetries and add symmetry breaking predicates (SBPs) during pre-processing. An important result of our work is that among the types of instance-independent SBPs we studied and their combinations, the simplest and least complete constructions are the most effective. Our experiments also clearly indicate that instance-independent symmetries should mostly be processed together with instance-specific symmetries rather than at the specification level, contrary to what has been suggested in the literature

    Bilinear Discrete Painleve-II and its Particular Solutions

    Full text link
    By analogy to the continuous Painlev\'e II equation, we present particular solutions of the discrete Painlev\'e II (d-PII\rm_{II}) equation. These solutions are of rational and special function (Airy) type. Our analysis is based on the bilinear formalism that allows us to obtain the Ο„\tau function for d-PII\rm_{II}. Two different forms of bilinear d-PII\rm_{II} are obtained and we show that they can be related by a simple gauge transformation.Comment: 9 pages in plain Te

    On a q-difference Painlev\'e III equation: I. Derivation, symmetry and Riccati type solutions

    Full text link
    A q-difference analogue of the Painlev\'e III equation is considered. Its derivations, affine Weyl group symmetry, and two kinds of special function type solutions are discussed.Comment: arxiv version is already officia

    Third-order integrable difference equations generated by a pair of second-order equations

    Full text link
    We show that the third-order difference equations proposed by Hirota, Kimura and Yahagi are generated by a pair of second-order difference equations. In some cases, the pair of the second-order equations are equivalent to the Quispel-Robert-Thomson(QRT) system, but in the other cases, they are irrelevant to the QRT system. We also discuss an ultradiscretization of the equations.Comment: 15 pages, 3 figures; Accepted for Publication in J. Phys.

    Singularity confinement and algebraic integrability

    Full text link
    Two important notions of integrability for discrete mappings are algebraic integrability and singularity confinement, have been used for discrete mappings. Algebraic integrability is related to the existence of sufficiently many conserved quantities whereas singularity confinement is associated with the local analysis of singularities. In this paper, the relationship between these two notions is explored for birational autonomous mappings. Two types of results are obtained: first, algebraically integrable mappings are shown to have the singularity confinement property. Second, a proof of the non-existence of algebraic conserved quantities of discrete systems based on the lack of confinement property is given.Comment: 18 pages, no figur

    A qq-anaolg of the sixth Painlev\'e equation

    Full text link
    A qq-difference analog of the sixth Painlev\'e equation is presented. It arises as the condition for preserving the connection matrix of linear qq-difference equations, in close analogy with the monodromy preserving deformation of linear differential equations. The continuous limit and special solutions in terms of qq-hypergeometric functions are also discussed.Comment: 8 pages, LaTeX file (Two misprints corrected

    Comparative RNAi Screens in C. elegans and C. briggsae Reveal the Impact of Developmental System Drift on Gene Function

    Get PDF
    Although two related species may have extremely similar phenotypes, the genetic networks underpinning this conserved biology may have diverged substantially since they last shared a common ancestor. This is termed Developmental System Drift (DSD) and reflects the plasticity of genetic networks. One consequence of DSD is that some orthologous genes will have evolved different in vivo functions in two such phenotypically similar, related species and will therefore have different loss of function phenotypes. Here we report an RNAi screen in C. elegans and C. briggsae to identify such cases. We screened 1333 genes in both species and identified 91 orthologues that have different RNAi phenotypes. Intriguingly, we find that recently evolved genes of unknown function have the fastest evolving in vivo functions and, in several cases, we identify the molecular events driving these changes. We thus find that DSD has a major impact on the evolution of gene function and we anticipate that the C. briggsae RNAi library reported here will drive future studies on comparative functional genomics screens in these nematodes
    • …
    corecore