6 research outputs found

    Lead Optimization of 1,4-Azaindoles as Antimycobacterial Agents

    No full text
    In a previous report, we described the discovery of 1,4-azaindoles, a chemical series with excellent in vitro and in vivo antimycobacterial potency through noncovalent inhibition of decaprenylphosphoryl-β-d-ribose-2′-epimerase (DprE1). Nevertheless, high mouse metabolic turnover and phosphodiesterase 6 (PDE6) off-target activity limited its advancement. Herein, we report lead optimization of this series, culminating in potent, metabolically stable compounds that have a robust pharmacokinetic profile without any PDE6 liability. Furthermore, we demonstrate efficacy for 1,4-azaindoles in a rat chronic TB infection model. We believe that compounds from the 1,4-azaindole series are suitable for in vivo combination and safety studies

    Aminoazabenzimidazoles, a Novel Class of Orally Active Antimalarial Agents

    No full text
    Whole-cell high-throughput screening of the AstraZeneca compound library against the asexual blood stage of Plasmodium falciparum (<i>Pf</i>) led to the identification of amino imidazoles, a robust starting point for initiating a hit-to-lead medicinal chemistry effort. Structure–activity relationship studies followed by pharmacokinetics optimization resulted in the identification of <b>23</b> as an attractive lead with good oral bioavailability. Compound <b>23</b> was found to be efficacious (ED<sub>90</sub> of 28.6 mg·kg<sup>–1</sup>) in the humanized P. falciparum mouse model of malaria (<i>Pf</i>/SCID model). Representative compounds displayed a moderate to fast killing profile that is comparable to that of chloroquine. This series demonstrates no cross-resistance against a panel of <i>Pf</i> strains with mutations to known antimalarial drugs, thereby suggesting a novel mechanism of action for this chemical class

    4‑Aminoquinolone Piperidine Amides: Noncovalent Inhibitors of DprE1 with Long Residence Time and Potent Antimycobacterial Activity

    No full text
    4-Aminoquinolone piperidine amides (AQs) were identified as a novel scaffold starting from a whole cell screen, with potent cidality on Mycobacterium tuberculosis (Mtb). Evaluation of the minimum inhibitory concentrations, followed by whole genome sequencing of mutants raised against AQs, identified decaprenylphosphoryl-β-d-ribose 2′-epimerase (DprE1) as the primary target responsible for the antitubercular activity. Mass spectrometry and enzyme kinetic studies indicated that AQs are noncovalent, reversible inhibitors of DprE1 with slow on rates and long residence times of ∼100 min on the enzyme. In general, AQs have excellent leadlike properties and good in vitro secondary pharmacology profile. Although the scaffold started off as a single active compound with moderate potency from the whole cell screen, structure–activity relationship optimization of the scaffold led to compounds with potent DprE1 inhibition (IC<sub>50</sub> < 10 nM) along with potent cellular activity (MIC = 60 nM) against Mtb

    Discovery of Imidazo[1,2‑<i>a</i>]pyridine Ethers and Squaramides as Selective and Potent Inhibitors of Mycobacterial Adenosine Triphosphate (ATP) Synthesis

    No full text
    The approval of bedaquiline to treat tuberculosis has validated adenosine triphosphate (ATP) synthase as an attractive target to kill Mycobacterium tuberculosis (Mtb). Herein, we report the discovery of two diverse lead series imidazo­[1,2-<i>a</i>]­pyridine ethers (IPE) and squaramides (SQA) as inhibitors of mycobacterial ATP synthesis. Through medicinal chemistry exploration, we established a robust structure–activity relationship of these two scaffolds, resulting in nanomolar potencies in an ATP synthesis inhibition assay. A biochemical deconvolution cascade suggested cytochrome c oxidase as the potential target of IPE class of molecules, whereas characterization of spontaneous resistant mutants of SQAs unambiguously identified ATP synthase as its molecular target. Absence of cross resistance against bedaquiline resistant mutants suggested a different binding site for SQAs on ATP synthase. Furthermore, SQAs were found to be noncytotoxic and demonstrated efficacy in a mouse model of tuberculosis infection
    corecore