27 research outputs found

    Collective dynamics of delay-coupled limit cycle oscillators

    Get PDF
    Coupled limit cycle oscillators with instantaneous mutual coupling offer a useful but idealized mathematical paradigm for the study of collective behavior in a wide variety of biological, physical and chemical systems. In most real-life systems however the interaction is not instantaneous but is delayed due to finite propagation times of signals, reaction times of chemicals, individual neuron firing periods in neural networks etc. We present a brief overview of the effect of time-delayed coupling on the collective dynamics of such coupled systems. Simple model equations describing two oscillators with a discrete time-delayed coupling as well as those describing linear arrays of a large number of oscillators with time-delayed global or local couplings are studied. Analytic and numerical results pertaining to time delay induced changes in the onset and stability of amplitude death and phase-locked states are discussed. A number of recent experimental and theoretical studies reveal interesting new directions of research in this field and suggest exciting future areas of exploration and applications

    Asynchronous response of coupled pacemaker neurons

    Full text link
    We study a network model of two conductance-based pacemaker neurons of differing natural frequency, coupled with either mutual excitation or inhibition, and receiving shared random inhibitory synaptic input. The networks may phase-lock spike-to-spike for strong mutual coupling. But the shared input can desynchronize the locked spike-pairs by selectively eliminating the lagging spike or modulating its timing with respect to the leading spike depending on their separation time window. Such loss of synchrony is also found in a large network of sparsely coupled heterogeneous spiking neurons receiving shared input.Comment: 11 pages, 4 figures. To appear in Phys. Rev. Let

    Phaselocked patterns and amplitude death in a ring of delay coupled limit cycle oscillators

    Full text link
    We study the existence and stability of phaselocked patterns and amplitude death states in a closed chain of delay coupled identical limit cycle oscillators that are near a supercritical Hopf bifurcation. The coupling is limited to nearest neighbors and is linear. We analyze a model set of discrete dynamical equations using the method of plane waves. The resultant dispersion relation, which is valid for any arbitrary number of oscillators, displays important differences from similar relations obtained from continuum models. We discuss the general characteristics of the equilibrium states including their dependencies on various system parameters. We next carry out a detailed linear stability investigation of these states in order to delineate their actual existence regions and to determine their parametric dependence on time delay. Time delay is found to expand the range of possible phaselocked patterns and to contribute favorably toward their stability. The amplitude death state is studied in the parameter space of time delay and coupling strength. It is shown that death island regions can exist for any number of oscillators N in the presence of finite time delay. A particularly interesting result is that the size of an island is independent of N when N is even but is a decreasing function of N when N is odd.Comment: 23 pages, 12 figures (3 of the figures in PNG format, separately from TeX); minor additions; typos correcte

    Effect of sharp jumps at the edges of phase response curves on synchronization of electrically coupled neuronal oscillators.

    Get PDF
    We study synchronization phenomenon of coupled neuronal oscillators using the theory of weakly coupled oscillators. The role of sudden jumps in the phase response curve profiles found in some experimental recordings and models on the ability of coupled neurons to exhibit synchronous and antisynchronous behavior is investigated, when the coupling between the neurons is electrical. The level of jumps in the phase response curve at either end, spike width and frequency of voltage time course of the coupled neurons are parameterized using piecewise linear functional forms, and the conditions for stable synchrony and stable antisynchrony in terms of those parameters are computed analytically. The role of the peak position of the phase response curve on phase-locking is also investigated

    Subthreshold outward currents enhance temporal integration in auditory neurons

    No full text
    corecore