23 research outputs found

    From exotic phases to microscopic Hamiltonians

    Full text link
    We report recent analytical progress in the quest for spin models realising exotic phases. We focus on the question of `reverse-engineering' a local, SU(2) invariant S=1/2 Hamiltonian to exhibit phases predicted on the basis of effective models, such as large-N or quantum dimer models. This aim is to provide a point-of-principle demonstration of the possibility of constructing such microscopic lattice Hamiltonians, as well as to complement and guide numerical (and experimental) approaches to the same question. In particular, we demonstrate how to utilise peturbed Klein Hamiltonians to generate effective quantum dimer models. These models use local multi-spin interactions and, to obtain a controlled theory, a decoration procedure involving the insertion of Majumdar-Ghosh chainlets on the bonds of the lattice. The phases we thus realise include deconfined resonating valence bond liquids, a devil's staircase of interleaved phases which exhibits Cantor deconfinement, as well as a three-dimensional U(1) liquid phase exhibiting photonic excitations.Comment: Invited talk at Peyresq Workshop on "Effective models for low-dimensional strongly correlated systems". Proceedings to be published by AIP. v2: references adde

    SU(2)-invariant spin-1/2 Hamiltonians with RVB and other valence bond phases

    Full text link
    We construct a family of rotationally invariant, local, S=1/2 Klein Hamiltonians on various lattices that exhibit ground state manifolds spanned by nearest-neighbor valence bond states. We show that with selected perturbations such models can be driven into phases modeled by well understood quantum dimer models on the corresponding lattices. Specifically, we show that the perturbation procedure is arbitrarily well controlled by a new parameter which is the extent of decoration of the reference lattice. This strategy leads to Hamiltonians that exhibit i) Z2Z_2 RVB phases in two dimensions, ii) U(1) RVB phases with a gapless ``photon'' in three dimensions, and iii) a Cantor deconfined region in two dimensions. We also construct two models on the pyrochlore lattice, one model exhibiting a Z2Z_2 RVB phase and the other a U(1) RVB phase.Comment: 16 pages, 15 figures; 1 figure and some references added; some minor typos fixe

    Biot-Savart correlations in layered superconductors

    Full text link
    We discuss the superconductor to normal phase transition in an infinite-layered type-II superconductor in the limit where the Josephson coupling between layers is negligible. We model each layer as a neutral gas of thermally excited pancake vortices. We assume the dominant interaction between vortices in the same and in different layers is the electromagnetic interaction between the screening currents induced by these vortices. Our main result, obtained by exactly solving the leading order renormalization group flow, is that the phase transition in this model is a Kosterlitz--Thouless transition despite being a three--dimensional system. While the transition itself is driven by the unbinding of two-dimensional pancake vortices, an RG analysis of the low temperature phase and a mean-field theory of the high temperature phase reveal that both phases possess three-dimensional correlations. An experimental consequence of this is that the jump in the measured in-plane superfluid stiffness, which is a universal quantity in 2d Kosterlitz-Thouless theory, will receive a small non--universal correction (of order 1% in Bi2_2Sr2_2CaCu2_2O8+x_{8+x}). This overall picture places some claims expressed in the literature on a more secure analytical footing and also resolves some conflicting views.Comment: 16 pages, 2 figures; minor typos corrected, references adde

    Supersymmetric Model of Spin-1/2 Fermions on a Chain

    Full text link
    In recent work, N=2 supersymmetry has been proposed as a tool for the analysis of itinerant, correlated fermions on a lattice. In this paper we extend these considerations to the case of lattice fermions with spin 1/2 . We introduce a model for correlated spin-1/2 fermions with a manifest N=4 supersymmetry, and analyze its properties. The supersymmetric ground states that we find represent holes in an anti-ferromagnetic background.Comment: 15 pages, 10 eps figure

    Some formal results for the valence bond basis

    Full text link
    In a system with an even number of SU(2) spins, there is an overcomplete set of states--consisting of all possible pairings of the spins into valence bonds--that spans the S=0 Hilbert subspace. Operator expectation values in this basis are related to the properties of the closed loops that are formed by the overlap of valence bond states. We construct a generating function for spin correlation functions of arbitrary order and show that all nonvanishing contributions arise from configurations that are topologically irreducible. We derive explicit formulas for the correlation functions at second, fourth, and sixth order. We then extend the valence bond basis to include triplet bonds and discuss how to compute properties that are related to operators acting outside the singlet sector. These results are relevant to analytical calculations and to numerical valence bond simulations using quantum Monte Carlo, variational wavefunctions, or exact diagonalization.Comment: 22 pages, 14 figure

    SU(2)-invariant spin-1/2 Hamiltonians with RVB and other valence bond phases

    No full text
    16 pages, 15 figures; 1 figure and some references added; some minor typos fixedWe construct a family of rotationally invariant, local, S=1/2 Klein Hamiltonians on various lattices that exhibit ground state manifolds spanned by nearest-neighbor valence bond states. We show that with selected perturbations such models can be driven into phases modeled by well understood quantum dimer models on the corresponding lattices. Specifically, we show that the perturbation procedure is arbitrarily well controlled by a new parameter which is the extent of decoration of the reference lattice. This strategy leads to Hamiltonians that exhibit i) Z2Z_2 RVB phases in two dimensions, ii) U(1) RVB phases with a gapless ``photon'' in three dimensions, and iii) a Cantor deconfined region in two dimensions. We also construct two models on the pyrochlore lattice, one model exhibiting a Z2Z_2 RVB phase and the other a U(1) RVB phase

    Magnetization process of spin ice in a [111] magnetic field

    No full text
    13 pages, 13 figuresSpin ice in a magnetic field in the [111] direction displays two magnetization plateaux, one at saturation and an intermediate one with finite entropy. We study the crossovers between the different regimes from a point of view of (entropically) interacting defects. We develop an analytical theory for the nearest-neighbor spin ice model, which covers most of the magnetization curve. We find that the entropy is non-monotonic, exhibiting a giant spike between the two plateaux. This regime is described by a monomer-dimer model with tunable fugacities. At low fields, we develop an RG treatment for the extended string defects, and we compare our results to extensive Monte Carlo simulations. We address the implications of our results for cooling by adiabatic (de)magnetization
    corecore