4 research outputs found

    From Organized High-Throughput Data to Phenomenological Theory using Machine Learning: The Example of Dielectric Breakdown

    No full text
    Understanding the behavior (and failure) of dielectric insulators experiencing extreme electric fields is critical to the operation of present and emerging electrical and electronic devices. Despite its importance, the development of a predictive theory of dielectric breakdown has remained a challenge, owing to the complex multiscale nature of this process. Here, we focus on the intrinsic dielectric breakdown field of insulatorsthe theoretical limit of breakdown determined purely by the chemistry of the material, i.e., the elements the material is composed of, the atomic-level structure, and the bonding. Starting from a benchmark data set (generated from laborious first-principles computations) of the intrinsic dielectric breakdown field of a variety of model insulators, simple predictive phenomenological models of dielectric breakdown are distilled using advanced statistical or machine learning schemes, revealing key correlations and analytical relationships between the breakdown field and easily accessible material properties. The models are shown to be general, and can hence guide the screening and systematic identification of high electric field tolerant materials

    Ullmann Reaction Catalyzed by Heterogeneous Mesoporous Copper/Manganese Oxide: A Kinetic and Mechanistic Analysis

    No full text
    A heterogeneous copper oxide supported on mesoporous manganese oxide (meso Cu/MnO<sub><i>x</i></sub>) was explored for Ullmann-type cross-coupling reactions. An inverse micelle-templated evaporation-induced self-assembly method with in situ addition of copper was adopted to synthesize the mesoporous catalyst. Broad substrate scope and excellent functional group tolerability in C–O, C–N, and C–S bond formation reactions were observed using the optimized reaction conditions. The catalytic protocol was ligand free, and the catalyst was reusable without any significant loss of activity. The kinetic and Hammett analyses provided evidence for oxidative addition to a Cu­(I) reaction center followed by nucleophilic addition and reductive elimination at the active copper oxide surface. Rate acceleration was observed for aryl halides with electron-withdrawing groups. The Hammett analysis determined ρ = +1.0, indicative of an oxidative addition, whereas the electronic effect in the phenol ring (ρ = −2.9) was indicative of coordination to a metal ion. Theoretically, the oxidative addition of the aryl halides is assisted by the ligand environment of the copper center. Relevant mechanistic implications are discussed on the basis of the experimental and computational results

    Seebeck and Figure of Merit Enhancement in Nanostructured Antimony Telluride by Antisite Defect Suppression through Sulfur Doping

    No full text
    Antimony telluride has a low thermoelectric figure of merit (ZT < ∼0.3) because of a low Seebeck coefficient α arising from high degenerate hole concentrations generated by antimony antisite defects. Here, we mitigate this key problem by suppressing antisite defect formation using subatomic percent sulfur doping. The resultant 10–25% higher α in bulk nanocrystalline antimony telluride leads to ZT ∼ 0.95 at 423 K, which is superior to the best non-nanostructured antimony telluride alloys. Density functional theory calculations indicate that sulfur increases the antisite formation activation energy and presage further improvements leading to ZT ∼ 2 through optimized doping. Our findings are promising for designing novel thermoelectric materials for refrigeration, waste heat recovery, and solar thermal applications

    Enhanced Polymeric Dielectrics through Incorporation of Hydroxyl Groups

    No full text
    We use simulations and experiments to delineate the mechanism by which the addition of a small number of polar −OH groups to a nonpolar polymer increases the static relative permittivity (or dielectric constant) by a factor of 2, but more importantly while keeping the dielectric loss in the frequency regime of interest to power electronics to less than 1%. Dielectric properties obtained from experiments on functionalized polyethylenes and polypropylenes as a function of −OH doping are in quantitative agreement with one another. Molecular dynamics simulations for the static relative permittivity of “dry” −OH functionalized polyethylene (in the absence of water) are apparently in quantitative agreement with experiments. However, these simulation results would further imply that there should be considerable dielectric loss beyond simulation time scales (>0.1 μs). Since there are minimal experimentally observed dielectric losses for times as short as a microsecond, we believe that a small amount of adsorbed water plays a critical role in this attenuated loss. We use simulations to derive the water concentration at saturation, and our results for this quantity are also in good agreement with experiments. Simulations of the static relative permittivity of PE–OH incorporating this quantity of hydration water are found to be in quantitative agreement with experiments when it is assumed that all the dipolar relaxations occur at time scales faster than 0.1 μ<i>s</i>. These results suggest that improved polymeric dielectric materials can be designed by including −OH groups on the chain, but the mechanism requires the presence of a stoichiometric quantity of hydration water
    corecore