16 research outputs found

    P-030 ACE2 receptor and its isoform short-ACE2 are expressed on human spermatozoa

    Get PDF
    STUDY QUESTION: Do human spermatozoa express angiotensin-converting enzyme 2 (ACE2) receptor? What would be its localization? SUMMARY ANSWER: Human spermatozoa express uniformly ACE2 on the sperm head and the flagellum. Moreover, the short-ACE2 isoform is concentrated on the post-acrosomal region and midpiece. WHAT IS KNOWN ALREADY: The Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) infection is generating important concerns regarding not only the possible consequences on the respiratory system, but also on other organs, including the reproductive system. ACE2 is considered the main point of entry for the SARS-CoV-2 within the cells through the binding with the spike protein on the virus surface. Furthermore, ACE2 is expressed in human testes cells including Leydig cells, Sertoli cells and spermatogonia. However, to date, the expression and location of ACE2 in mature human spermatozoa has not been investigated yet. STUDY DESIGN, SIZE, DURATION: This was an in vitro study for the evaluation of the expression and immune-localization of full-length ACE2 and its isoform, short-ACE2, in human spermatozoa. Thirthyfour non-immunized healthy normozoospermic volunteers were enrolled in the study. The study was conducted from May to December 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS: Semen samples were collected by masturbation from non-immunized healthy normozoospermic voluntaries. Motile sperm suspensions were obtained by swim-up procedure. The expression of ACE2 was assessed by Western-blot analysis, while the immune-localization of ACE2 was evaluated by immune-cytochemical analysis under confocal microscopy. Flow-cytometry experiments were also performed to assess the surface protein expression on a large number of cells. MAIN RESULTS AND THE ROLE OF CHANCE: The Western-blot analysis of sperm extracts demonstrated two specific bands, one of approximately 120 KDa, corresponding to the glycosylated full-length ACE2, and a second one of approximately 52 KDa, the molecular weight of the protein recently termed short-ACE2. The immune-cytochemical analysis showed a uniformly localization of full-length ACE2 along both the sperm head and the flagellum, whereas the short isoform was preferentially located in the post-acrosomal region of the sperm head and the midpiece. At the flow cytometer, semen samples displayed a wide between-subject variability both in the percentage of ACE2-positive spermatozoa and the density of protein surface expression. LIMITATIONS, REASONS FOR CAUTION: Further studies are needed to determine whether short-ACE2 is a cleavage product from the full-length protein or if it is originated during spermatogenesis. Moreover, the role and the interaction of ACE2 with SARS-CoV-2 in human spermatozoa should be clarified to evaluate the possible impact of the virus on sperm biology. WIDER IMPLICATIONS OF THE FINDINGS: Since mature spermatozoa are transcriptionally silent and SARS-CoV-2 is an RNA virus, it is unlikely that the virus could affect sperm biology by replicating itself. Nevertheless, the potential effects related to modifications of the sperm membrane or interaction with other receptors or specific proteins cannot be ruled out. TRIAL REGISTRATION NUMBER: not applicabl

    26S PROTEASOME AND PKA MODULATE MAMMALIAN SPERM CAPACITATION BY CREATING AN INTEGRATED DIALOGUE: A COMPUTATIONAL ANALYSIS

    Get PDF
    Recent experimental evidence suggests the involvement of the 26S proteasome, the main protease active in eukaryotic cells, in the process that leads mammalian sperm to become fully fertile, so-called capacitation. Unfortunately, its role in male gametes signaling is still far from being completely understood. For this reason, here, we realized a computational model as an attempt to rebuild and explore 26S proteasome signaling cascade, aggregating all the molecular data available to date and realizing the Proteasome Interactome Network (PIN). Once obtained the network (i.e., a graph to represent the molecules as nodes and the interactions among them as links), we assessed its topology to infer important biological information. PIN is composed of 157 nodes, 248 links and it is characterized by a scale-free topology, following the Barabasi Albert model. In other words, it possesses a large amount of scarcely linked nodes and a small set of highly linked nodes, the hubs, which act as system controllers. This peculiar topology confers to the network relevant biological features: it is robust against random attacks, easily navigable and controllable and it is possible to infer new information from it. Indeed, the analysis of PIN showed that PKA and 26S proteasome were strongly interconnected and both were active in sperm signaling by influencing the protein phosphorylation pattern and then controlling several key events in sperm capacitation, such as membrane and cytoskeleton remodeling. In conclusion, the network model could explain many biological aspects of sperm physiology that are out of focus looking at the single molecular determinant, overcoming the reductionist approach which did not consider the complexity of molecules and their interactions. This could be helpful to identify potential diagnostic markers and therapeutic strategies concurring in explaining and approaching male infertility

    Development of a novel protocol based on blood clot to improve the sensitivity of qPCR detection of toxoplasma gondii in peripheral blood specimens

    Get PDF
    Quantitative polymerase chain reaction (qPCR) for Toxoplasma gondii multicopy genes has emerged as a promising strategy for sensitive detection of parasite DNA. qPCR can be performed from blood samples, which are minimally invasive to collect. However, there is no consensus about what type of blood specimen yields the best sensitivity. The development of a novel protocol for qPCR detection of T. gondii using blood clot, involving an appropriate DNA extraction method and the use of an internal amplification control to monitor the reaction is presented in the current study. Assays directed to the B1 and REP529 genes were performed in spiked specimens of whole blood, guanidine–ethylenediaminetetraacetic acid blood, and clot. The clot-based qPCR was shown to be more sensitive when compared with other types of specimens, detecting five and 0.05 T. gondii genomes, using B1 and REP529 targets, respectively. Finally, a comparative analysis with samples from HIV patients with clinical suspicion of toxoplasmosis was performed, demonstrating the detection of four positive suspected cases with clots compared with only one using guanidine–ethylenediaminetetraacetic acid blood. The high analytical sensitivity and the cost-effective advantages offered by clot supports this methodology as a good laboratory tool to monitor parasite burden

    Cyclin-CDK Complexes are Key Controllers of Capacitation-Dependent Actin Dynamics in Mammalian Spermatozoa

    No full text
    Mammalian spermatozoa are infertile immediately after ejaculation and need to undergo a functional maturation process to acquire the competence to fertilize the female egg. During this process, called capacitation, the actin cytoskeleton dramatically changes its organization. First, actin fibers polymerize, forming a network over the anterior part of the sperm cells head, and then it rapidly depolymerizes and disappears during the exocytosis of the acrosome content (the acrosome reaction (AR)). Here, we developed a computational model representing the actin dynamics (AD) process on mature spermatozoa. In particular, we represented all the molecular events known to be involved in AD as a network of nodes linked by edges (the interactions). After the network enrichment, using an online resource (STRING), we carried out the statistical analysis on its topology, identifying the controllers of the system and validating them in an experiment of targeted versus random attack to the network. Interestingly, among them, we found that cyclin-dependent kinase (cyclin-CDK) complexes are acting as stronger controllers. This finding is of great interest since it suggests the key role that cyclin-CDK complexes could play in controlling AD during sperm capacitation, leading us to propose a new and interesting non-genomic role for these molecules

    Human Immune System Diseasome Networks and Female Oviductal Microenvironment: New Horizons to be Discovered

    No full text
    Human hypofertility and infertility are two worldwide conditions experiencing nowadays an alarming increase due to a complex ensemble of events. The immune system has been suggested as one of the responsible for some of the etiopathogenic mechanisms involved in these conditions. To shed some light into the strong correlation between the reproductive and immune system, as can be inferred by the several and valuable manuscripts published to date, here we built a network using a useful bioinformatic tool (DisGeNET), in which the key genes involved in the sperm-oviduct interaction were linked. This constitutes an important event related with Human fertility since this interaction, and specially the spermatozoa, represents a not-self entity immunotolerated by the female. As a result, we discovered that some proteins involved in the sperm-oviduct interaction are implicated in several immune system diseases while, at the same time, some immune system diseases could interfere by using different pathways with the reproduction process. The data presented here could be of great importance to understand the involvement of the immune system in fertility reduction in Humans, setting the basis for potential immune therapeutic tools in the near future

    Two-Player Game in a Complex Landscape: 26S Proteasome, PKA, and Intracellular Calcium Concentration Modulate Mammalian Sperm Capacitation by Creating an Integrated Dialogue-A Computational Analysis

    No full text
    Recent experimental findings suggest the involvement of the 26S proteasome, the main protease active in eukaryotic cells, in the process that leads mammalian sperm to become fully fertile, so-called capacitation. Unfortunately, its role in male gametes signaling is still far from being completely understood. For this reason, here, we realized a computational model, based on network theory, with the aim of rebuilding and exploring its signaling cascade. As a result, we found that the 26S proteasome is part of a signal transduction system that recognizes the bicarbonate ion as an input terminal and two intermediate layers of information processing. The first is under the control of the 26S proteasome and protein kinase A (PKA), which are strongly interconnected, while the latter depends on intracellular calcium concentrations. Both are active in modulating sperm function by influencing the protein phosphorylation pattern and then controlling several key events in sperm capacitation, such as membrane and cytoskeleton remodeling. Then, we found different clusters of molecules possibly involved in this pathway and connecting it to the immune system. In conclusion, this work adds a piece to the puzzle of protease and kinase crosstalk involved in the physiology of sperm cells

    Graphene Oxide Improves in vitro Fertilization in Mice With No Impact on Embryo Development and Preserves the Membrane Microdomains Architecture

    No full text
    During the latest years, human infertility worsened all over the world and is nowadays reputed as a global public health issue. As a consequence, the adoption of Assisted Reproductive Technologies (ARTs) such as In Vitro Fertilization (IVF) is undergoing an impressive increase. In this context, one of the most promising strategies is the innovative adoption of extra-physiological materials for advanced sperm preparation methods. Here, by using a murine model, the addition of Graphene Oxide (GO) at a specific concentration has demonstrated to increase the spermatozoa fertilizing ability in an IVF assay, finding that 0.5 μg/ml GO addition to sperm suspensions before IVF is able to increase both the number of fertilized oocytes and embryos created with a healthy offspring given by Embryo Transplantation (ET). In addition, GO treatment has been found more effective than that carried out with methyl-β-cyclodextrin, which represents the gold standard in promoting in vitro fertility of mice spermatozoa. Subsequent biochemical characterization of its interaction with male gametes has been additionally performed. As a result, it was found that GO exerts its positive effect by extracting cholesterol from membranes, without affecting the integrity of microdomains and thus preserving the sperm functions. In conclusion, GO improves IVF outcomes in vitro and in vivo, defining new perspectives for innovative strategies in the treatment of human infertility

    Graphene Oxide increases mammalian spermatozoa fertilizing ability by extracting cholesterol from their membranes and promoting capacitation

    No full text
    Graphene Oxide (GO) is a widely used biomaterial with an amazing variety of applications in biology and medicine. Recently, we reported the ability of GO to improve the in vitro fertilization (IVF) outcomes in swine, a validated animal model with a high predictive value for human fertility. For that reason, here we characterized the mechanisms involved in this positive interaction by adopting an experimental approach combining biological methods (confocal microscopy analysis on single cell, flow cytometry on cell populations and co-incubation with epithelial oviductal cells), physical-chemical techniques (Differential Scanning Calorimetry and Thermogravimetric Analysis), and chemical methods (mass spectrometry and lipid measurement). As a result, we propose a model in which GO is able to extract cholesterol from the spermatozoa membrane without causing any detrimental effect. In this way, the cholesterol extraction promotes a change in membrane chemical-physical properties that could positively affect male gamete function, modulating sperm signalling function and increasing in this way the fertilizing potential, without losing the ability to physiologically interact with the female environment. In conclusion, these data seem to suggest new intriguing possibilities in engineering sperm membrane for improving assisted reproduction technologies outcomes, even in human medicine
    corecore