3,432 research outputs found

    Multi-wavelength observations of the gamma-ray flaring quasar S4 1030+61 in 2009-2014

    Full text link
    We present a study of the parsec-scale multi-frequency properties of the quasar S4 1030+61 during a prolonged radio and gamma-ray activity. Observations were performed within Fermi gamma-ray telescope, OVRO 40-m telescope and MOJAVE VLBA monitoring programs, covering five years from 2009. The data are supplemented by four-epoch VLBA observations at 5, 8, 15, 24, and 43 GHz, which were triggered by the bright gamma-ray flare, registered in the quasar in 2010. The S4 1030+61 jet exhibits an apparent superluminal velocity of (6.4+-0.4)c and does not show ejections of new components in the observed period, while decomposition of the radio light curve reveals nine prominent flares. The measured variability parameters of the source show values typical for Fermi-detected quasars. Combined analysis of radio and gamma-ray emission implies a spatial separation between emitting regions at these bands of about 12 pc and locates the gamma-ray emission within a parsec from the central engine. We detected changes in the value and direction of the linear polarization and the Faraday rotation measure. The value of the intrinsic brightness temperature of the core is above the equipartition state, while its value as a function of distance from the core is well approximated by the power-law. Altogether these results show that the radio flaring activity of the quasar is accompanied by injection of relativistic particles and energy losses at the jet base, while S4 1030+61 has a stable, straight jet well described by standard conical jet theories.Comment: accepted by MNRAS, 16 pages, 14 figures, 8 tables, 5 pages of supplementary materia

    Zero Temperature Insulator-Metal Transition in Doped Manganites

    Get PDF
    We study the transition at T=0 from a ferromagnetic insulating to a ferromagnetic metallic phase in manganites as a function of hole doping using an effective low-energy model Hamiltonian proposed by us recently. The model incorporates the quantum nature of the dynamic Jahn-Teller(JT) phonons strongly coupled to orbitally degenerate electrons as well as strong Coulomb correlation effects and leads naturally to the coexistence of localized (JT polaronic) and band-like electronic states. We study the insulator-metal transition as a function of doping as well as of the correlation strength U and JT gain in energy E_{JT}, and find, for realistic values of parameters, a ground state phase diagram in agreement with experiments. We also discuss how several other features of manganites as well as differences in behaviour among manganites can be understood in terms of our model.Comment: To be published in Europhysics Letter

    Crystal Symmetry Lowering in Chiral Multiferroic Ba3_3TaFe3_3Si2_2O14_{14} observed by X-Ray Magnetic Scattering

    Full text link
    Chiral multiferroic langasites have attracted attention due to their doubly-chiral magnetic ground state within an enantiomorphic crystal. We report on a detailed resonant soft X-ray diffraction study of the multiferroic Ba3_3TaFe3_3Si2_2O14_{14} at the Fe L2,3L_{2,3} and oxygen KK edges. Below TNT_N (27K\approx27K) we observe the satellite reflections (0,0,τ)(0,0,\tau), (0,0,2τ)(0,0,2\tau), (0,0,3τ)(0,0,3\tau) and (0,0,13τ)(0,0,1-3\tau) where τ0.140±0.001\tau \approx 0.140 \pm 0.001. The dependence of the scattering intensity on X-ray polarization and azimuthal angle indicate that the odd harmonics are dominated by the out-of-plane (c^\mathbf{\hat{c}}-axis) magnetic dipole while the (0,0,2τ)(0,0,2\tau) originates from the electron density distortions accompanying magnetic order. We observe dissimilar energy dependences of the diffraction intensity of the purely magnetic odd-harmonic satellites at the Fe L3L_3 edge. Utilizing first-principles calculations, we show that this is a consequence of the loss of threefold crystal symmetry in the multiferroic phase

    Magnetic Ordering and Superconductivity in the RE2_2Ir3_3Ge5_5 (RE = Y, La-Tm, Lu) System

    Full text link
    We find that the compounds for RE = Y, La-Dy, crystallize in the tetragonal Ibam (U2_2Co3_3Si5_5 type) structure whereas the compounds for RE = Er-Lu, crystallize in a new orthorhombic structure with a space group Pmmn. Samples of Ho2_2Ir3_3Ge5_5 were always found to be multiphase. The compounds for RE = Y to Dy which adopt the Ibam type structure show a metallic resistivity whereas the compounds with RE = Er, Tm and Lu show an anomalous behavior in the resistivity with a semiconducting increase in ρ\rho as we go down in temperature from 300K. Interestingly we had earlier found a positive temperature coefficient of resistivity for the Yb sample in the same temperature range. We will compare this behavior with similar observations in the compounds RE3_3Ru4_4Ge13_{13} and REBiPt. La2_2Ir3_3Ge5_5 and Y2_2Ir3_3Ge5_5 show bulk superconductivity below 1.8K and 2.5K respectively. Our results confirm that Ce2_2Ir3_3Ge5_5 shows a Kondo lattice behavior and undergoes antiferromagnetic ordering below 8.5K. Most of the other compounds containing magnetic rare-earth elements undergo a single antiferromagnetic transition at low temperatures (T\leq12K) while Gd2_2Ir3_3Ge5_5, Dy2_2Ir3_3Ge5_5 and Nd2_2Ir3_3Ge5_5 show multiple transitions. The TN_N's for most of the compounds roughly scale with the de Gennes factor. which suggests that the chief mechanism of interaction leading to the magnetic ordering of the magnetic moments may be the RKKY interaction.Comment: 25 pages, 16 figure

    Incentive Compatible Mechanisms for Group Ticket Allocation in Software Maintenance Services

    Get PDF

    Descriptive Complexity of Deterministic Polylogarithmic Time and Space

    Full text link
    We propose logical characterizations of problems solvable in deterministic polylogarithmic time (PolylogTime) and polylogarithmic space (PolylogSpace). We introduce a novel two-sorted logic that separates the elements of the input domain from the bit positions needed to address these elements. We prove that the inflationary and partial fixed point vartiants of this logic capture PolylogTime and PolylogSpace, respectively. In the course of proving that our logic indeed captures PolylogTime on finite ordered structures, we introduce a variant of random-access Turing machines that can access the relations and functions of a structure directly. We investigate whether an explicit predicate for the ordering of the domain is needed in our PolylogTime logic. Finally, we present the open problem of finding an exact characterization of order-invariant queries in PolylogTime.Comment: Submitted to the Journal of Computer and System Science

    CFD Simulation Studies on a 19 Cone Angle Hydrocyclone

    Get PDF
    Hydrocyclone being in practice for classification applicat-ions are of low cone angle typically at 10°. The details on the simulation of such hydrocyclone are well reported. The present study is an attempt to simulate the water flow behaviour inside a 3 inch 19° cone angle hydrocyclone, which in general is applied for processing intermediate size coal and is popularly know as heavy medium cyclone. A 3D axi-symmetric model of standard 3" heavy medium cyclone geometry is generated. The computational domain is divided into unstructured grid having 115053 tetrahe-dral volumes using GAMBIT preprocessor. A segregated solver with steady state 3-D double precision scheme was used for model computations assigning a convergence value of 1e-06. For predicting swirling flow characteristics prevailing inside the cyclone, Pressure Interpolation Scheme (PRESTO) is used. Reynolds stress model (RSM), which was reported to account with greater precision for the effects of swirl, rotation etc. was selected for turbulence calculat-ions. For obtaining the pressure field inside the system SIMPLE algorithm scheme was used. Higher-order Quadratic Upwind Interpolation (QUICK) spatial discretisation scheme was used for field variables interpolation from cell centers to faces of the control volumes. Tangential, axial velocity profiles and pressure distributions are pres-ented and the water-split values obtained through simula-tion are compared with the experimental results

    Exploring metastability via the third harmonic measurements in single crystals of 2H2H-NbSe2NbSe_2 showing anomalous Peak effect

    Get PDF
    We explore the metastability effects across the order-disorder transition pertaining to the peak effect phenomenonon in critical current density (JcJ_c) via the first and the third harmonic ac susceptibility measurements in the weakly pinned single crystals of 2H2H-NbSe2NbSe_2. An analysis of our data suggests that an imprint of the limiting (spinodal) temperature above which JcJ_c is path independent can be conveniently located in the third harmonic data (χ3ω\chi_{3\omega}^{\prime}).Comment: Accepted for publication in Phys. Rev.
    corecore