268 research outputs found

    A heuristics approach for computing the largest eigenvalue of a pairwise comparison matrix

    Get PDF
    Pairwise comparison matrices (PCMs) are widely used to capture subjective human judgements, especially in the context of the Analytic Hierarchy Process (AHP). Consistency of judgements is normally computed in AHP context in the form of consistency ratio (CR), which requires estimation of the largest eigenvalue (Lmax) of PCMs. Since many of these alternative methods do not require calculation of eigenvector, Lmax and hence the CR of a PCM cannot be easily estimated. We propose in this paper a simple heuristics for calculating Lmax without any need to use Eigenvector Method (EM). We illustrated the proposed procedure with larger size matrices. Simulation is used to compare the accuracy of the proposed heuristics procedure with actual Lmax for PCMs of various sizes. It has been found that the proposed heuristics is highly accurate, with errors less than 1%. The proposed procedure would avoid biases and help managers to make better decisions. The advantage of the proposed heuristics is that it can be easily calculated with simple calculations without any need for specialised mathematical procedures or software and is independent of the method used to derive priorities from PCMs

    On the nature of the spore-appendage in Neottiospora Desm.

    Get PDF
    This article does not have an abstract

    Anthasthoopa, a new genus of the Sphæropsidales

    Get PDF
    This article does not have an abstract

    Glycerol conversion to 1, 3-Propanediol is enhanced by the expression of a heterologous alcohol dehydrogenase gene in Lactobacillus reuteri

    Get PDF
    In this work, Lactobacillus reuteri has been metabolically engineered for improving 1, 3-propanediol (1, 3-PD) production by the expression of an Escherichia coli alcohol dehydrogenase, yqhD, that is known to efficiently convert the precursor 3-hydroxypropionaldehyde (3-HPA) to 1, 3-PD. The engineered strain exhibited significantly altered formation rates for the product and other metabolites during the fermentation. An increase in the 1, 3-PD specific productivity of 34% and molar yield by 13% was achieved in the clone, relative to the native strain. A concomitant decrease in the levels of toxic intermediate, 3-HPA, was observed, with the specific productivity levels being 25% lesser than that of the native strain. Interestingly, the recombinant strain exhibited elevated rates of lactate and ethanol formation as well as reduced rate of acetate production, compared to the native strain. The preferential utilization of NADPH by YqhD with a possible decrease in the native 1, 3-PD oxidoreductase (NADH-dependent) activity, could have resulted in the diversion of surplus NADH towards increased lactate and ethanol productivities

    Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review

    Get PDF
    Overcoming the recalcitrance (resistance of plant cell walls to deconstruction) of lignocellulosic biomass is a key step in the production of fuels and chemicals. The recalcitrance is due to the highly crystalline structure of cellulose which is embedded in a matrix of polymers-lignin and hemicellulose. The main goal of pretreatment is to overcome this recalcitrance, to separate the cellulose from the matrix polymers, and to make it more accessible for enzymatic hydrolysis. Reports have shown that pretreatment can improve sugar yields to higher than 90% theoretical yield for biomass such as wood, grasses, and corn. This paper reviews different leading pretreatment technologies along with their latest developments and highlights their advantages and disadvantages with respect to subsequent hydrolysis and fermentation. The effects of different technologies on the components of biomass (cellulose, hemicellulose, and lignin) are also reviewed with a focus on how the treatment greatly enhances enzymatic cellulose digestibility

    Utjecaj pojačane ekspresije gena biosintetskog puta za 3-hidroksipropionsku kiselinu na njezin prinos u bakteriji Lactobacillus reuteri

    Get PDF
    3-Hydroxypropionic acid (3-HP) is a novel antimicrobial agent against foodborne pathogens like Salmonella and Staphylococcus species. Lactobacillus reuteri converts glycerol into 3-HP using a coenzyme A-dependent pathway, which is encoded by propanediol utilization operon (pdu) subjected to catabolite repression. In a catabolite repression-deregulated L. reuteri RPRB3007, quantitative PCR revealed a 2.5-fold increase in the transcripts of the genes pduP, pduW and pduL during the mid-log phase of growth. The production of 3-HP was tested in resting cells in phosphate buff er and growing batch cultures in MRS broth of various glucose/glycerol ratios. Due to the upregulation of pathway genes, specific formation rate of 3-HP in the mutant strain was found to be enhanced from 0.167 to 0.257 g per g of cell dry mass per h. Furthermore, formation of 3-HP in resting cells was limited due to the substrate inhibition by reuterin at a concentration of (30±5) mM. In batch cultures, the formation of 3-HP was not observed during the logarithmic and stationary phases of growth of wild-type and mutant strains, which was confi rmed by NMR spectroscopy. However, the cells collected in these phases were found to produce 3-HP aft er washing and converting them to resting cells. Lactate and acetate, the primary end products of glucose catabolism, might be the inhibiting elements for 3-HP formation in batch cultures. This was confirmed when lactate (25±5 mM) or acetate (20±5 mM) were added to biotransformation medium, which prevented the 3-HP formation. Moreover, the removal of sodium acetate and glucose (carbon source for lactic acid production) was found to restore 3-HP formation in the MRS broth in a similar manner to that of the phosphate buff er. Even though the genetic repression was circumvented by the up-regulation of pathway genes using a mutant strain, 3-HP formation was further limited by the substrate and catabolite inhibition.3-Hidroksipropionska kiselina je novi antimikrobni agens koji se može upotrijebiti za suzbijanje patogenih bakterija u hrani, kao što su vrste iz rodova Salmonella i Staphylococcus. Bakterija Lactobacillus reuteri iz glicerola sintetizira 3-hidroksipropionsku kiselinu biosintetskim putem ovisnim o koenzimu A, kodiranim operonom za korištenje propandiola koji je reguliran kataboličkom represijom. U mutantu L. reuteri RPRB3007 u kojem nema kataboličke represije, ispitanom pomoću metode PCR, primijećeno je 2,5 puta više transkripata gena pduP, pduW i pduL, i to tijekom logaritamske faze rasta bakterije. Proizvodnja 3-hidroksipropionske kiseline određena je u stanicama koje se ne dijele, a bile su resuspendirane u fosfatnom puferu, te u šaržnim kulturama uzgojenim u podlozi MRS s različitim omjerima glukoze i glicerola. Utvrđeno je da se u mutantu zbog pojačane ekspresije gena biosintetskog puta povećala specifična brzina nastajanja 3-hidroksipropionske kiseline, i to s 0,167 na 0,257 g po gramu suhe biomase po satu. Osim toga, sinteza je 3-hidroksipropionske kiseline u stanicama koje se ne dijele bila usporena nakon dodatka reuterina u koncentraciji od (30±5) mM. U šaržnom uzgoju nije utvrđena prisutnost 3-hidroksipropionske kiseline tijekom logaritamske i stacionarne faze rasta divljeg soja i mutanta, što je potvrđeno i NMR spektroskopijom. Međutim, nakon ispiranja i povratka u stanje mirovanja ove su stanice ponovno proizvodile 3-hidroksipropionsku kiselinu. Zaključeno je da laktat i acetat, primarni produkti katabolizma glukoze, vjerojatno inhibiraju sintezu 3-hidroksipropionske kiseline u šaržnim kulturama, što je potvrđeno činjenicom da dodatak laktata u koncentraciji od (25±5) mM ili acetata u koncentraciji od (20±5) mM podlozi sprečava sintezu 3-hidroksipropionske kiseline. Osim toga, uklanjanjem je natrijevog acetata i glukoze (izvora ugljika za proizvodnju mliječne kiseline) potaknuta proizvodnja 3-hiroksipropionske kiseline u hranjivoj podlozi MRS na sličan način kao i uporabom fosfatnog pufera. Iako je genetička represija u mutantu izbjegnuta pojačanom ekspresijom gena biosintetskog puta, proizvodnja je 3-hidroksipropionske kiseline i dalje bila ograničena supstratom i kataboličkom inhibicijom

    Coherent x-ray studies of the microscopic dynamics underlying the phase behavior and nonlinear rheology of gel-forming nanocolloidal suspensions

    Get PDF
    This talk will describe two related projects exploring the properties of gels formed from nanometer-scale colloids. The first involves the phase behavior and microstructural dynamics of concentrated binary mixtures of spherical colloids with a size ratio near two and with a tunable, intrinsic short-range attraction. In the absence of the attraction, the suspensions behave as well mixed, hard-sphere liquids. For sufficiently strong attraction, the suspensions undergo a gel transition. However, the fluid-gel boundary does not follow an ideal mixing law, but rather the gel state is stable at weaker interparticle attraction in the mixtures than in the corresponding monodisperse suspensions. X-ray photon correlation spectroscopy measurements reveal that, in contrast with depletion-driven gelation at larger size ratio, gel formation in the mixtures coincides with dynamic arrest of the smaller colloids while the larger colloids remain mobile. Complementary molecular dynamics simulations indicate the arrest results from microphase separation that is caused by a subtle interplay of entropic and enthalpic effects and that drives the smaller particles to form gel nuclei in the vicinity of the larger colloids. The second part of the talk will describe coherent x-ray experiments on concentrated (monodisperse) nanocolloidal gels subjected to in situ large-amplitude oscillatory shear, which provide unique information about the spatial character of nanometer-scale particle rearrangements associated with nonlinear rheology and yielding of the gels. The oscillatory strain causes periodic echoes in the x-ray speckle pattern, creating peaks in the intensity autocorrelation function. The peak amplitudes are attenuated above a threshold strain, signaling the onset of irreversible particle rearrangements. The gels display strain softening well below the threshold, indicating a range of strains at which deformations are nonlinear but reversible. The peak amplitudes decay exponentially with the number of shear cycles above the threshold strain, demonstrating that all regions in the sample are equally susceptible to yielding and surprisingly that the probability of a region yielding is independent of previous shear history. The wave-vector dependence of the decay rate reveals a power-law distribution in the size of rearranging regions, suggesting a nonequilibrium critical transition at yielding
    corecore