1,914 research outputs found

    Zero Temperature Insulator-Metal Transition in Doped Manganites

    Get PDF
    We study the transition at T=0 from a ferromagnetic insulating to a ferromagnetic metallic phase in manganites as a function of hole doping using an effective low-energy model Hamiltonian proposed by us recently. The model incorporates the quantum nature of the dynamic Jahn-Teller(JT) phonons strongly coupled to orbitally degenerate electrons as well as strong Coulomb correlation effects and leads naturally to the coexistence of localized (JT polaronic) and band-like electronic states. We study the insulator-metal transition as a function of doping as well as of the correlation strength U and JT gain in energy E_{JT}, and find, for realistic values of parameters, a ground state phase diagram in agreement with experiments. We also discuss how several other features of manganites as well as differences in behaviour among manganites can be understood in terms of our model.Comment: To be published in Europhysics Letter

    Inference in Probabilistic Logic Programs with Continuous Random Variables

    Full text link
    Probabilistic Logic Programming (PLP), exemplified by Sato and Kameya's PRISM, Poole's ICL, Raedt et al's ProbLog and Vennekens et al's LPAD, is aimed at combining statistical and logical knowledge representation and inference. A key characteristic of PLP frameworks is that they are conservative extensions to non-probabilistic logic programs which have been widely used for knowledge representation. PLP frameworks extend traditional logic programming semantics to a distribution semantics, where the semantics of a probabilistic logic program is given in terms of a distribution over possible models of the program. However, the inference techniques used in these works rely on enumerating sets of explanations for a query answer. Consequently, these languages permit very limited use of random variables with continuous distributions. In this paper, we present a symbolic inference procedure that uses constraints and represents sets of explanations without enumeration. This permits us to reason over PLPs with Gaussian or Gamma-distributed random variables (in addition to discrete-valued random variables) and linear equality constraints over reals. We develop the inference procedure in the context of PRISM; however the procedure's core ideas can be easily applied to other PLP languages as well. An interesting aspect of our inference procedure is that PRISM's query evaluation process becomes a special case in the absence of any continuous random variables in the program. The symbolic inference procedure enables us to reason over complex probabilistic models such as Kalman filters and a large subclass of Hybrid Bayesian networks that were hitherto not possible in PLP frameworks. (To appear in Theory and Practice of Logic Programming).Comment: 12 pages. arXiv admin note: substantial text overlap with arXiv:1203.428

    Modeling and Analysis of Interactions in Virtual Enterprises

    Get PDF
    Advances in computer networking technology and open system standards are making the creation and management of virtual enterprises feasible. A virtual enterprise is a temporary consortium of autonomous, diverse, and possibly geographically dispersed organizations that pool their resources to meet short-term objectives and exploit fastchanging market trends. For a virtual enterprise to succeed, its business processes must be automated, and its startup costs must be minimized. In this paper we describe a formal framework for modeling and reasoning about interactions in a virtual enterprise. Such a framework will form the basis for tools that provide automated support for creation and operation of virtual enterprises. 1

    Phase Separation and Charge-Ordered Phases of the d = 3 Falicov-Kimball Model at T>0: Temperature-Density-Chemical Potential Global Phase Diagram from Renormalization-Group Theory

    Full text link
    The global phase diagram of the spinless Falicov-Kimball model in d = 3 spatial dimensions is obtained by renormalization-group theory. This global phase diagram exhibits five distinct phases. Four of these phases are charge-ordered (CO) phases, in which the system forms two sublattices with different electron densities. The CO phases occur at and near half filling of the conduction electrons for the entire range of localized electron densities. The phase boundaries are second order, except for the intermediate and large interaction regimes, where a first-order phase boundary occurs in the central region of the phase diagram, resulting in phase coexistence at and near half filling of both localized and conduction electrons. These two-phase or three-phase coexistence regions are between different charge-ordered phases, between charge-ordered and disordered phases, and between dense and dilute disordered phases. The second-order phase boundaries terminate on the first-order phase transitions via critical endpoints and double critical endpoints. The first-order phase boundary is delimited by critical points. The cross-sections of the global phase diagram with respect to the chemical potentials and densities of the localized and conduction electrons, at all representative interactions strengths, hopping strengths, and temperatures, are calculated and exhibit ten distinct topologies.Comment: Calculated density phase diagrams. Added discussions and references. 14 pages, 9 figures, 4 table

    Freezing transition of the vortex liquid in anisotropic superconductors

    Full text link
    We study the solid-liquid transition of a model of pancake vortices in laminar superconductors using a density functional theory of freezing. The physical properties of the system along the melting line are discussed in detail. We show that there is a very good agreement with experimental data in the shape and position of the first order transition in the phase diagram and in the magnitude and temperature dependence of the magnetic induction jump at the transition. We analyze the validity of the Lindemann melting criterion and the Hansen-Verlet freezing criterion. Both criteria are shown to be good to predict the phase diagram in the region where a first order phase transition is experimentally observed.Comment: 9 pages, 10 figure

    Theory of Insulator Metal Transition and Colossal Magnetoresistance in Doped Manganites

    Get PDF
    The persistent proximity of insulating and metallic phases, a puzzling characterestic of manganites, is argued to arise from the self organization of the twofold degenerate e_g orbitals of Mn into localized Jahn-Teller(JT) polaronic levels and broad band states due to the large electron - JT phonon coupling present in them. We describe a new two band model with strong correlations and a dynamical mean-field theory calculation of equilibrium and transport properties. These explain the insulator metal transition and colossal magnetoresistance quantitatively, as well as other consequences of two state coexistence

    Comparison of History Effects in Magnetization in Weakly pinned Crystals of high-TcT_c and low-Tc_c Superconductors

    Full text link
    A comparison of the history effects in weakly pinned single crystals of a high TcT_c YBa2_2Cu3_3O7δ_{7 - \delta} (for H \parallel c) and a low TcT_c Ca3_3Rh4_4Sn13_{13}, which show anomalous variations in critical current density Jc(H)J_c(H) are presented via tracings of the minor magnetization hysteresis loops using a vibrating sample magnetometer. The sample histories focussed are, (i) the field cooled (FC), (ii) the zero field cooled (ZFC) and (iii) an isothermal reversal of field from the normal state. An understanding of the results in terms of the modulation in the plastic deformation of the elastic vortex solid and supercooling across order-disorder transition is sought.Comment: Presented in IWCC-200

    Magnetization hysteresis and time decay measurements in FeSe0.50_{0.50}Te0.50_{0.50} : Evidence for fluctuation in mean free path induced pinning

    Full text link
    We present results of magnetic measurements relating to vortex phase diagram in a single crystal of FeSe0.5_{0.5}Te0.5_{0.5} which displays second magnetization peak anomaly for HcH \parallel c. The possible role of the crystalline anisotropy on vortex pinning is explored via magnetic torque magnetometry. We present evidence in favor of pinning related to spatial variations of the charge carrier mean free path leading to small bundle vortex pinning by randomly distributed (weak) pinning centers for both HcH \parallel c and HcH \perp c. This is further corroborated using magnetization data for HcH \parallel c in a single crystal of FeSe0.35_{0.35}Te0.65_{0.65}. Dynamical response across second magnetization peak (SMP) anomaly in FeSe0.5_{0.5}Te0.5_{0.5} has been compared with that across the well researched phenomenon of peak effect (PE) in a single crystal of CeRu2_2.Comment: 11 figures, provided additional data in another sample, added Fig.
    corecore