5 research outputs found

    Detection and localization of early- and late-stage cancers using platelet RNA

    Get PDF
    Cancer patients benefit from early tumor detection since treatment outcomes are more favorable for less advanced cancers. Platelets are involved in cancer progression and are considered a promising biosource for cancer detection, as they alter their RNA content upon local and systemic cues. We show that tumor-educated platelet (TEP) RNA-based blood tests enable the detection of 18 cancer types. With 99% specificity in asymptomatic controls, thromboSeq correctly detected the presence of cancer in two-thirds of 1,096 blood samples from stage I–IV cancer patients and in half of 352 stage I–III tumors. Symptomatic controls, including inflammatory and cardiovascular diseases, and benign tumors had increased false-positive test results with an average specificity of 78%. Moreover, thromboSeq determined the tumor site of origin in five different tumor types correctly in over 80% of the cancer patients. These results highlight the potential properties of TEP-derived RNA panels to supplement current approaches for blood-based cancer screening

    Rapid and On-Scene Chemical Identification of Intact Explosives with Portable Near-Infrared Spectroscopy and Multivariate Data Analysis

    No full text
    There is an ongoing forensic and security need for rapid, on-scene, easy-to-use, non-invasive chemical identification of intact energetic materials at pre-explosion crime scenes. Recent technological advances in instrument miniaturization, wireless transfer and cloud storage of digital data, and multivariate data analysis have created new and very promising options for the use of near-infrared (NIR) spectroscopy in forensic science. This study shows that in addition to drugs of abuse, portable NIR spectroscopy with multivariate data analysis also offers excellent opportunities to identify intact energetic materials and mixtures. NIR is able to characterize a broad range of chemicals of interest in forensic explosive investigations, covering both organic and inorganic compounds. NIR characterization of actual forensic casework samples convincingly shows that this technique can handle the chemical diversity encountered in forensic explosive investigations. The detailed chemical information contained in the 1350–2550 nm NIR reflectance spectrum allows for correct compound identification within a given class of energetic materials, including nitro-aromatics, nitro-amines, nitrate esters, and peroxides. In addition, the detailed characterization of mixtures of energetic materials, such as plastic formulations containing PETN (pentaerythritol tetranitrate) and RDX (trinitro triazinane), is feasible. The results presented illustrate that the NIR spectra of energetic compounds and mixtures are sufficiently selective to prevent false-positive results for a broad range of food-related products, household chemicals, raw materials used for the production of home-made explosives, drugs of abuse, and products that are sometimes used to create hoax improvised explosive devices. However, for frequently encountered pyrotechnic mixtures, such as black powder, flash powder, and smokeless powder, and some basic inorganic raw materials, the application of NIR spectroscopy remains challenging. Another challenge is presented by casework samples of contaminated, aged, and degraded energetic materials or poor-quality HMEs (home-made explosives), for which the spectral signature deviates significantly from the reference spectra, potentially leading to false-negative outcomes

    The influence of water of crystallization in NIR-based MDMA·HCl detection

    Get PDF
    The large numbers of 3,4-methylenedioxy-N-methylamphetamine (MDMA) formulations encountered by the police and border security necessitates the need for safe, rapid and reliable tests to be performed on-site. Near-infrared (NIR) spectroscopy is a promising technique for on-scene illicit-drug detection because of its rapid analysis, non-invasive nature, broad scope to detect various substances, and small-sized sensors suitable for portable operation. The NIR spectrum of MDMA shows an intriguing, intense peak at ∼2000 nm that was found characteristic for MDMA within a large set of drugs and drug-related substances. Herein, we show that this peak can be attributed to water molecules of crystallization in the MDMA lattice. Drying experiments showed that both an anhydrous and hydrated form of MDMA·HCl exists with significantly different NIR spectra. At ambient conditions, the anhydrous form converted back to the hydrated form within 2 months. Our data analysis model was able to identify MDMA·HCl in mixtures of both forms. Assessment of seized casework materials showed that the majority of MDMA·HCl in The Netherlands is of the hydrated type. This is explained by the use of water-containing concentrated hydrochloric acid in the final conversion step of MDMA-base to the hydrochloride salt in clandestine laboratories. These findings provide insight in the challenges associated with NIR-based identification of drugs that may appear in various crystalline forms. Awareness on the existence of these forms and the consequences of library and data-model design to cope with this phenomenon will increase the robustness of on-site NIR-based drug detection

    Detection and localization of early- and late-stage cancers using platelet RNA

    No full text
    Cancer patients benefit from early tumor detection since treatment outcomes are more favorable for less advanced cancers. Platelets are involved in cancer progression and are considered a promising biosource for cancer detection, as they alter their RNA content upon local and systemic cues. We show that tumor-educated platelet (TEP) RNA-based blood tests enable the detection of 18 cancer types. With 99% specificity in asymptomatic controls, thromboSeq correctly detected the presence of cancer in two-thirds of 1,096 blood samples from stage I-IV cancer patients and in half of 352 stage I-III tumors. Symptomatic controls, including inflammatory and cardiovascular diseases, and benign tumors had increased false-positive test results with an average specificity of 78%. Moreover, thromboSeq determined the tumor site of origin in five different tumor types correctly in over 80% of the cancer patients. These results highlight the potential properties of TEP-derived RNA panels to supplement current approaches for blood-based cancer screening

    Detection and localization of early- and late-stage cancers using platelet RNA

    Get PDF
    Cancer patients benefit from early tumor detection since treatment outcomes are more favorable for less advanced cancers. Platelets are involved in cancer progression and are considered a promising biosource for cancer detection, as they alter their RNA content upon local and systemic cues. We show that tumor-educated platelet (TEP) RNA-based blood tests enable the detection of 18 cancer types. With 99% specificity in asymptomatic controls, thromboSeq correctly detected the presence of cancer in two-thirds of 1,096 blood samples from stage I–IV cancer patients and in half of 352 stage I–III tumors. Symptomatic controls, including inflammatory and cardiovascular diseases, and benign tumors had increased false-positive test results with an average specificity of 78%. Moreover, thromboSeq determined the tumor site of origin in five different tumor types correctly in over 80% of the cancer patients. These results highlight the potential properties of TEP-derived RNA panels to supplement current approaches for blood-based cancer screening
    corecore