32 research outputs found

    An apoplastic fluid extraction method for the characterization of grapevine leaves proteome and metabolome from a single sample

    Get PDF
    The analysis of complex biological systems keeps challenging researchers. The main goal of systems biology is to decipher interactions within cells, by integrating datasets from large scale analytical approaches including transcriptomics, proteomics and metabolomics andmore specialized ā€˜OMICSā€™ such as epigenomics and lipidomics. Studying different cellular compartments allows a broader understanding of cell dynamics. Plant apoplast, the cellular compartment external to the plasma membrane including the cell wall, is particularly demanding to analyze. Despite our knowledge on apoplast involvement on several processes from cell growth to stress responses, its dynamics is still poorly known due to the lack of efficient extraction processes adequate to each plant system.Analyzing woody plants such as grapevine raises even more challenges. Grapevine is among the most important fruit crops worldwide and awider characterization of its apoplast is essential for a deeper understanding of its physiology and cellular mechanisms. Here, we describe, for the first time, a vacuum-infiltrationcentrifugationmethod that allows a simultaneous extraction of grapevine apoplastic proteins and metabolites from leaves on a single sample, compatible with high-throughput mass spectrometry analyses. The extracted apoplast from two grapevine cultivars, Vitis vinifera cv ā€˜Trincadeiraā€™ and ā€˜Regentā€™, was directly used for proteomics and metabolomics analysis. The proteome was analyzed by nanoLC-MS/MS and more than 700 common proteinswere identified, with highly diverse biological functions. The metabolome profile through FT-ICR-MS allowed the identification of 514 unique putative compounds revealing a broad spectrum of molecular classesinfo:eu-repo/semantics/publishedVersio

    The proteome of neural stem cells from adult rat hippocampus

    Get PDF
    BACKGROUND: Hippocampal neural stem cells (HNSC) play an important role in cerebral plasticity in the adult brain and may contribute to tissue repair in neurological disease. To describe their biological potential with regard to plasticity, proliferation, or differentiation, it is important to know the cellular composition of their proteins, subsumed by the term proteome. RESULTS: Here, we present for the first time a proteomic database for HNSC isolated from the brains of adult rats and cultured for 10 weeks. Cytosolic proteins were extracted and subjected to two-dimensional gel electrophoresis followed by protein identification through mass spectrometry, database search, and gel matching. We could map about 1141 Ā± 209 (N = 5) protein spots for each gel, of which 266 could be identified. We could group the identified proteins into several functional categories including metabolism, protein folding, energy metabolism and cellular respiration, as well as cytoskeleton, Ca(2+ )signaling pathways, cell cycle regulation, proteasome and protein degradation. We also found proteins belonging to detoxification, neurotransmitter metabolism, intracellular signaling pathways, and regulation of DNA transcription and RNA processing. CONCLUSIONS: The HNSC proteome database is a useful inventory which will allow to specify changes in the cellular protein expression pattern due to specific activated or suppressed pathways during differentiation or proliferation of neural stem cells. Several proteins could be identified in the HNSC proteome which are related to differentiation and plasticity, indicating activated functional pathways. Moreover, we found a protein for which no expression has been described in brain cells before

    Serum proteome analysis for profiling protein markers associated with carcinogenesis and lymph node metastasis in nasopharyngeal carcinoma

    Get PDF
    Nasopharyngeal carcinoma (NPC), one of the most common cancers in population with Chinese or Asian progeny, poses a serious health problem for southern China. It is unfortunate that most NPC victims have had lymph node metastasis (LNM) when first diagnosed. We believe that the 2D based serum proteome analysis can be useful in discovering new biomarkers that may aid in the diagnosis and therapy of NPC patients. To filter the tumor specific antigen markers of NPC, sera from 42 healthy volunteers, 27 non-LNM NPC patients and 37 LNM NPC patients were selected for screening study using 2D combined with MS. Pretreatment strategy, including sonication, albumin and immunoglobulin G (IgG) depletion, was adopted for screening differentially expressed proteins of low abundance in serum. By 2D image analysis and MALDI-TOF-MS identification, twenty-three protein spots were differentially expressed. Three of them were further validated in the sera using enzyme-linked immunosorbent assay (ELISA). Our research demonstrates that HSP70, sICAM-1 and SAA, confirmed with ELISA at sera and immunohistochemistry, are potential NPC metastasis-specific serum biomarkers which may be of great underlying significance in clinical detection and management of NPC

    The influence of cultivation methods on Shewanella oneidensis physiology and proteome expression

    Get PDF
    High-throughput analyses that are central to microbial systems biology and ecophysiology research benefit from highly homogeneous and physiologically well-defined cell cultures. While attention has focused on the technical variation associated with high-throughput technologies, biological variation introduced as a function of cell cultivation methods has been largely overlooked. This study evaluated the impact of cultivation methods, controlled batch or continuous culture in bioreactors versus shake flasks, on the reproducibility of global proteome measurements in Shewanellaoneidensis MR-1. Variability in dissolved oxygen concentration and consumption rate, metabolite profiles, and proteome was greater in shake flask than controlled batch or chemostat cultures. Proteins indicative of suboxic and anaerobic growth (e.g., fumarate reductase and decaheme c-type cytochromes) were more abundant in cells from shake flasks compared to bioreactor cultures, a finding consistent with data demonstrating that ā€œaerobicā€ flask cultures were O2 deficient due to poor mass transfer kinetics. The work described herein establishes the necessity of controlled cultivation for ensuring highly reproducible and homogenous microbial cultures. By decreasing cell to cell variability, higher quality samples will allow for the interpretive accuracy necessary for drawing conclusions relevant to microbial systems biology research

    Associating H 2

    No full text
    corecore