37 research outputs found

    Composition and rheological properties of flour and dough from genetically modified wheat (Triticum aestivum L.) Hi-Line 111

    Get PDF
    The main objective of this work was to evaluate the composition, nutritional, physical and rheological properties of wheat flour and dough from genetically modified wheat (Triticum aestivum L.) Hi-Line 111 (GMW) compared to conventional wheat (non-GMW). Analyses were conducted to measure the proximate chemical composition with references to 18 components including total solid, protein, lipids, crude fiber, ash, carbohydrate, minerals, amino acids, and fatty acids. In addition, physical and rheological properties such as water absorption, arrival time, dough development time, stability value, dough weakening value, extensibility of dough, resistance to extension, and ratio of resistance/extensibility were evaluated. The results showed that there were no significant differences between GMW and non-GMW in terms of chemical composition. Results revealed the presence of saturated and unsaturated fatty acids wherein there were no significant differences between GMW and its counterpart in the levels of fatty acids. In addition, there were no significant differences on the levels of amino acids. In addition, there were no significant differences between the GMW and non-GMW in the physical and rheological properties. From these results, it can be concluded that GMW Hi-Line 111 is confirmed to have nearly the composition and rheological properties as non-GMW

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The effect of Li2O and LiF on structural properties of cobalt doped borate glasses

    Get PDF
    AbstractTwo glassy (LiF–B2O3) and (Li2O–B2O3) systems containing different content of CoO dopants (0.05, 0.1, 0.15, 0.2wt%) were prepared. UV/Vis optical absorption of base glasses reveals a strong UV absorption bands attributed to unavoidable contaminated trace iron impurities. CoO-doped glasses show extra three visible bands due to both octahedral and tetrahedral Co2+ ions related to the little variation between energies of ligand field stabilization between the two coordination states. Fluoride containing glasses show limited variations in the spectral properties due to the different ligand strength of the anions (F− and O2−). FTIR spectra display characteristic modes of vibrations due to triangular and tetrahedral borate groups. It is assumed that LiF acts as Li2O in promoting the formation of tetrahedral (BO3F) units which possess the same wavenumber position for vibrations of (BO4) units in the range of 800–1200cm−1. CoO causes no distinct variations in number or position of characteristic IR vibrational bands due to their low dopant level (0.05–0.2%). A new suggested trial has been utilized to calculate the percent of four coordinated borons from both optical and FTIR spectra to give more insight on the role of CoO as dopant on these spectral properties and on the calculated parameters

    Probabilistic Classifier and Its Application to Face Recognition

    No full text

    Comparative study for image registration techniques of remote sensing images

    Get PDF
    Image registration determines the relative orientation between two images. As there are different techniques for image registration, it is important to compare these techniques to identify the advantages and disadvantages of each one. In this paper, a comparison between a fast Fourier transform (FFT)-based technique, a contour-based technique, a wavelet-based technique, a Harris–Pulse Coupled Neural Network (PCNN)-based technique and Harris–Moment-based technique is presented. The algorithms were tested on Landsat Thematic Mapper (TM) and SPOT remote sensing images and its performance were compared using the Root Mean Square Error (RMSE). It has been concluded that the order of techniques with less RMSE is the PCNN, the moment, the contour, the wavelet and the FFT-based techniques, respectively. Whereas the order of techniques with the less running time is the contour, the wavelet, the moment, the FFT and the PCNN-based techniques, respectively. And finally the technique that detects the more control points in both images is the wavelet
    corecore