6 research outputs found

    The role of the organic cation in developing efficient green perovskite LEDs based on quasi‐2D perovskite heterostructures

    No full text
    Two dimensional/three-dimensional (2D/3D) metal halide perovskite heterostructures have attracted great interest in photovoltaic and light-emitting diode (LEDs) applications. In both, their implementation results in an improvement in device efficiency yet the understanding of these heterostructures remains incomplete. In this work the role of organic cations, essential for the formation of 2D perovskite structures is unraveled, in a range of metal halide perovskite heterostructures. These heterostructures are used to fabricate efficient green perovskite LEDs and a strong dependence between cation content and device performance is shown. The crystal structure, charge-carrier transport and dynamics, and the electronic structure of these heterostructures are studied and it is shown that the presence of crystalline 2D perovskite inhibits electron injection and ultimately lowers device performance. This work highlights the importance of optimizing the composition of these heterostructures in ensuring optimal device performance across all parameters and suggests that developing routes to inject charge-carriers directly into 2D perovskite structures will be important in ensuring the continued development of perovskite LEDs based on these heterostructures

    A Universal Perovskite Nanocrystal Ink for High‐Performance Optoelectronic Devices

    No full text
    Semiconducting lead halide perovskite nanocrystals (PNCs) are regarded as promising candidates for next-generation optoelectronic devices due to their solution processability and outstanding optoelectronic properties. While the field of light-emitting diodes (LEDs) and photovoltaics (PVs), two prime examples of optoelectronic devices, has recently seen a multitude of efforts toward high-performance PNC-based devices, realizing both devices with high efficiencies and stabilities through a single PNC processing strategy has remained a challenge. In this work, diphenylpropylammonium (DPAI) surface ligands, found through a judicious ab-initio-based ligand search, are shown to provide a solution to this problem. The universal PNC ink with DPAI ligands presented here, prepared through a solution-phase ligand-exchange process, simultaneously allows single-step processed LED and PV devices with peak electroluminescence external quantum efficiency of 17.00% and power conversion efficiency of 14.92% (stabilized output 14.00%), respectively. It is revealed that a careful design of the aromatic rings such as in DPAI is the decisive factor in bestowing such high performances, ease of solution processing, and improved phase stability up to 120 days. This work illustrates the power of ligand design in producing PNC ink formulations for high-throughput production of optoelectronic devices; it also paves a path for “dual-mode” devices with both PV and LED functionalities

    Current Strategies and Future Perspectives of Skin-on-a-Chip Platforms: Innovations, Technical Challenges and Commercial Outlook

    No full text

    Wholegrains: a review on the amino acid profile, mineral content, physicochemical, bioactive composition and health benefits

    No full text
    corecore