6 research outputs found
FlyRNAi: the Drosophila RNAi screening center database
RNA interference (RNAi) has become a powerful tool for genetic screening in Drosophila. At the Drosophila RNAi Screening Center (DRSC), we are using a library of over 21 000 double-stranded RNAs targeting known and predicted genes in Drosophila. This library is available for the use of visiting scientists wishing to perform full-genome RNAi screens. The data generated from these screens are collected in the DRSC database () in a flexible format for the convenience of the scientist and for archiving data. The long-term goal of this database is to provide annotations for as many of the uncharacterized genes in Drosophila as possible. Data from published screens are available to the public through a highly configurable interface that allows detailed examination of the data and provides access to a number of other databases and bioinformatics tools
Recommended from our members
FlyRNAi: the Drosophila RNAi screening center database.
RNA interference (RNAi) has become a powerful tool for genetic screening in Drosophila. At the Drosophila RNAi Screening Center (DRSC), we are using a library of over 21,000 double-stranded RNAs targeting known and predicted genes in Drosophila. This library is available for the use of visiting scientists wishing to perform full-genome RNAi screens. The data generated from these screens are collected in the DRSC database (http://flyRNAi.org/cgi-bin/RNAi_screens.pl) in a flexible format for the convenience of the scientist and for archiving data. The long-term goal of this database is to provide annotations for as many of the uncharacterized genes in Drosophila as possible. Data from published screens are available to the public through a highly configurable interface that allows detailed examination of the data and provides access to a number of other databases and bioinformatics tools
Recommended from our members
ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the Androgen Receptor
The TMPRSS2:ERG gene fusion is common in androgen receptor (AR) positive prostate cancers, yet its function remains poorly understood. From a screen for functionally relevant ERG interactors, we identify the arginine methyltransferase PRMT5. ERG recruits PRMT5 to AR-target genes, where PRMT5 methylates AR on arginine 761. This attenuates AR recruitment and transcription of genes expressed in differentiated prostate epithelium. The AR-inhibitory function of PRMT5 is restricted to TMPRSS2:ERG-positive prostate cancer cells. Mutation of this methylation site on AR results in a transcriptionally hyperactive AR, suggesting that the proliferative effects of ERG and PRMT5 are mediated through attenuating AR’s ability to induce genes normally involved in lineage differentiation. This provides a rationale for targeting PRMT5 in TMPRSS2:ERG positive prostate cancers. Moreover, methylation of AR at arginine 761 highlights a mechanism for how the ERG oncogene may coax AR towards inducing proliferation versus differentiation. DOI: http://dx.doi.org/10.7554/eLife.13964.00
A functional screen of the epigenome identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers
Epigenetic dysregulation is an emerging hallmark of cancers, and the identification of recurrent somatic mutations in chromatin regulators implies a causal role for altered chromatin states in tumorigenesis. As the majority of epigenetic mutations are inactivating and thus do not present directly druggable targets, we reasoned that these mutations may alter the epigenomic state of cancer cells and thereby expose novel epigenetic vulnerabilities. To systematically search for epigenetic synthetic lethal interactions, we performed a deep coverage pooled shRNA screen across a large collection of cancer cell lines using a library targeting a diverse set of epigenetic regulators. Strikingly, this unbiased screen revealed that silencing of the SWI/SNF ATPase subunit BRM/SMARCA2, selectively inhibits the proliferation of BRG1-deficient cancer cells. The mammalian SWI/SNF complexes (mSWI/SNF) regulate chromatin structure through ATP-dependent nucleosome remodeling. Recent cancer genome studies have revealed a significant frequency of mutations in several components of the mSWI/SNF complexes including loss of the catalytic subunit BRG1 in non-small cell lung cancers. Our studies reveal that BRM knockdown selectively induced cell cycle arrest in BRG1-mutant cancer cells and significantly impaired the growth of BRG1-mutant lung tumor xenografts. BRM is the paralog of BRG1, suggesting a model in which mSWI/SNF mutations lead to a hypomorphic complex that promotes tumorigenesis but cannot tolerate complete inactivation. Therefore, our studies present BRM as an attractive therapeutic target in BRG1-mutant cancers
Identification of a novel NAMPT inhibitor by CRISPR/Cas9 chemogenomic profiling in mammalian cells
Chemogenomic profiling is a powerful and unbiased approach to elucidate targets and mechanism of bioactive compounds. Until recently, high-quality experiments of this nature have been limited to fungal systems due to lack of mammalian genome-wide deletion collections. Here we show that the CRISPR/Cas9 system enables the generation of such libraries and allows for the identification of targets and pathways mediating hypersensitivity and resistance relevant to the compound mechanism of action, using a novel NAMPT inhibitor as an example