34 research outputs found

    Pyrolysis Caused Tail-Off Thrust in a Solid Rocket Motor: A Semi-Empirical Model

    Get PDF
    Knowledge of tail-off thrust characteristics of solid rocket motors used for an upper stage of satellite launch 'Vehicle is essential for proper sequencing of stage separation. The phenomenon is highly complex and theoretical models accurately describing the tail-off thrust are not available. Only rough estimates can be made through ground testing. A semi-empirical model is derived by the authorsusing the Indian polar satellite launch vehicle (PSL V) flight data and is used for fixing the time of stage separation. The model has been validated using data over an extended duration from another flight ofthe PSL V. The method adopted for modelling is described

    PRODUCTION OF MEDIUM CHAIN LENGTH POLYHYDROXYALKANOATES FROM OLEIC ACID USING Pseudomonas putida PGA1 BY FED BATCH CULTURE

    Get PDF
    Bacterial polyhydroxyalkanoates (PHAs) are a class of polymers currently receiving much attention because of theirpotential as renewable and biodegradable plastics. A wide variety of bacteria has been reported to produce PHAsincluding Pseudomonas strains. These strains are known as versatile medium chain length PHAs (PHAs-mcl) producersusing fatty acids as carbon source. Oleic acid was used to produce PHAs-mcl using Pseudomonas putida PGA 1 bycontinuous feeding of both nitrogen and carbon source, in a fed batch culture. During cell growth, PHAs alsoaccumulated, indicating that PHA production in this organism is growth associated. Residual cell increased until thenitrogen source was depleted. At the end of fermentation, final cell concentration, PHA content, and productivity were30.2 g/L, 44.8 % of cell dry weight, and 0.188 g/l/h, respectively.Keywords: Biodegradable plastics, medium-chain-length polyhydroxyalkanoates (PHAs-mcl), oleic acid, Pseudomonasputida PGA 1, fed batch fermentatio

    Especiação e seus mecanismos: histórico conceitual e avanços recentes

    Full text link

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.</p

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol�which is a marker of cardiovascular risk�changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95 credible interval 3.7 million�4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world. © 2020, The Author(s), under exclusive licence to Springer Nature Limited

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities 1,2 . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity 3�6 . Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55 of the global rise in mean BMI from 1985 to 2017�and more than 80 in some low- and middle-income regions�was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing�and in some countries reversal�of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories. © 2019, The Author(s)

    Wavelet-based fundamental heart sound recognition method using morphological and interval features

    No full text
    Accurate and reliable recognition of fundamental heart sounds (FHSs) plays a significant role in automated analysis of heart sound (HS) patterns. This Letter presents an automated wavelet-based FHS recognition (WFHSR) method using morphological and interval features. The proposed method first performs the decomposition of phonocardiogram (PCG) signal using a synchrosqueezing wavelet transform to extract the HSs and suppresses the murmurs, low-frequency and high-frequency noises. The HS delineation (HSD) is presented using Shannnon energy envelope and amplitude-dependent thresholding rule. The FHS recognition (FHSR) is presented using interval, HS duration and envelope area features with a decision-rule algorithm. The performance of the method is evaluated on PASCAL HSs Challenge, PhysioNet/CinC HS Challenge, eGeneralMedical databases and real-time recorded PCG signals. Results show that the HSD approach achieves an average sensitivity (Se) of 98.87%, positive predictivity (Pp) of 97.50% with detection error rate of 3.67% for PCG signals with signal-to-noise ratio of 10 dB, and outperforms the existing HSD methods. The proposed FHSR method achieves a Se of 99.00%, Sp of 99.08% and overall accuracy of 99.04% on both normal and abnormal PCG signals. Evaluation results show that the proposed WFHSR method is able to accurately recognise the S1/S2 HSs in noisy real-world PCG recordings with murmurs and other abnormal sounds
    corecore