5,368 research outputs found

    High Temperature Fatigue Crack Growth Behavior of Ti-6Al-4V

    Get PDF
    Experimental evaluation of high temperature, Fatigue Crack Growth Rate (FCGR) data for Ti-6A1-4V, a titanium alloy, is presented. The FCGR data were measured at room temperature, 175, 230, 290 and 345°C using the Direct Current Potential Difference (DCPD) technique. Compact Tension (CT) specimens were used in the program and crack growth rates (da/dN) vs. Mode I stress intensity factor ranges (ΔΚ) were plotted as a function of temperature. A temperature rise from 175 to 345°C did not cause a substantial increase in crack growth rates within the Stage II region where a linear relationship describes the behavior. Fonnation of secondary cracks, observed at higher temperatures, may have slowed the crack propagation as observed in the fractography

    Upper Limits on the Continuum Emission from Geminga at 74 and 326 MHz

    Get PDF
    We report a search for radio continuum emission from the gamma-ray pulsar Geminga. We have used the VLA to image the location of the optical counterpart of Geminga at 74 and 326 MHz. We detect no radio counterpart. We derive upper limits to the pulse-averaged flux density of Geminga, taking diffractive scintillation into account. We find that diffractive scintillation is probably quenched at 74 MHz and does not influence our upper limit, S < 56 mJy (2\sigma), but that a 95% confidence level at 326 MHz is S < 5 mJy. Owing to uncertainties on the other low-frequency detections and the possibility of intrinsic variability or extrinsic variability (refractive interstellar scintillation) or both, our non-detections are nominally consistent with these previous detections.Comment: 8 pages, LaTeX2e with AASTeX 4.0, 3 figures; to be published in Ap

    Tomographic approach to resolving the distribution of LISA Galactic binaries

    Get PDF
    The space based gravitational wave detector LISA is expected to observe a large population of Galactic white dwarf binaries whose collective signal is likely to dominate instrumental noise at observational frequencies in the range 10^{-4} to 10^{-3} Hz. The motion of LISA modulates the signal of each binary in both frequency and amplitude, the exact modulation depending on the source direction and frequency. Starting with the observed response of one LISA interferometer and assuming only doppler modulation due to the orbital motion of LISA, we show how the distribution of the entire binary population in frequency and sky position can be reconstructed using a tomographic approach. The method is linear and the reconstruction of a delta function distribution, corresponding to an isolated binary, yields a point spread function (psf). An arbitrary distribution and its reconstruction are related via smoothing with this psf. Exploratory results are reported demonstrating the recovery of binary sources, in the presence of white Gaussian noise.Comment: 13 Pages and 9 figures high resolution figures can be obtains from http://www.phys.utb.edu/~rajesh/lisa_tomography.pd

    Correlations and Omori law in Spamming

    Full text link
    The most costly and annoying characteristic of the e-mail communication system is the large number of unsolicited commercial e-mails, known as spams, that are continuously received. Via the investigation of the statistical properties of the spam delivering intertimes, we show that spams delivered to a given recipient are time correlated: if the intertime between two consecutive spams is small (large), then the next spam will most probably arrive after a small (large) intertime. Spam temporal correlations are reproduced by a numerical model based on the random superposition of spam sequences, each one described by the Omori law. This and other experimental findings suggest that statistical approaches may be used to infer how spammers operate.Comment: Europhysics Letters, to appea

    Empirical Determination of Threshold Partial Wave Amplitudes in ppppωp p \to p p \omega

    Full text link
    Using the model independent irreducible tensor approach to ω\omega production in pppp collisions, we show theoretically that, it is advantageous to measure experimentally the polarization of ω\omega, in addition to the proposed experimental study employing a polarized beam and a polarized target.Comment: 6 pages, 1 Table, Latex-2

    Landau Levels in the noncommutative AdS2AdS_2

    Get PDF
    We formulate the Landau problem in the context of the noncommutative analog of a surface of constant negative curvature, that is AdS2AdS_2 surface, and obtain the spectrum and contrast the same with the Landau levels one finds in the case of the commutative AdS2AdS_2 space.Comment: 19 pages, Latex, references and clarifications added including 2 figure

    On possible skewon effects on light propagation

    Full text link
    We start from a local and linear spacetime relation between the electromagnetic excitation and the field strength. Then we study the generally covariant Fresnel surfaces for light rays and light waves. The metric and the connection of spacetime are left unspecified. Accordingly, our framework is ideally suited for a search of possible violations of the Lorentz symmetry in the photon sector of the extended standard model. We discuss how the skewon part of the constitutive tensor, if suitably parametrized, influences the Fresnel surfaces and disturbs the light cones of vacuum electrodynamics. Conditions are specified that yield the reduction of the original quartic Fresnel surface to the double light cone structure (birefringence) and to the single light cone. Qualitatively, the effects of the real skewon field can be compared to those in absorbing material media. In contrast, the imaginary skewon field can be interpreted in terms of non-absorbing media with natural optical activity and Faraday effects. The astrophysical data on gamma-ray bursts are used for deriving an upper limit for the magnitude of the skewon field.Comment: Revtex, 29 pages, 10 figures, references added, text as in the published versio

    Combining Fine- and Coarse-Grained Classifiers for Diabetic Retinopathy Detection

    Full text link
    Visual artefacts of early diabetic retinopathy in retinal fundus images are usually small in size, inconspicuous, and scattered all over retina. Detecting diabetic retinopathy requires physicians to look at the whole image and fixate on some specific regions to locate potential biomarkers of the disease. Therefore, getting inspiration from ophthalmologist, we propose to combine coarse-grained classifiers that detect discriminating features from the whole images, with a recent breed of fine-grained classifiers that discover and pay particular attention to pathologically significant regions. To evaluate the performance of this proposed ensemble, we used publicly available EyePACS and Messidor datasets. Extensive experimentation for binary, ternary and quaternary classification shows that this ensemble largely outperforms individual image classifiers as well as most of the published works in most training setups for diabetic retinopathy detection. Furthermore, the performance of fine-grained classifiers is found notably superior than coarse-grained image classifiers encouraging the development of task-oriented fine-grained classifiers modelled after specialist ophthalmologists.Comment: Pages 12, Figures

    A predictive processing theory of sensorimotor contingencies: explaining the puzzle of perceptual presence and its absence in synesthesia

    Get PDF
    Normal perception involves experiencing objects within perceptual scenes as real, as existing in the world. This property of “perceptual presence” has motivated “sensorimotor theories” which understand perception to involve the mastery of sensorimotor contingencies. However, the mechanistic basis of sensorimotor contingencies and their mastery has remained unclear. Sensorimotor theory also struggles to explain instances of perception, such as synesthesia, that appear to lack perceptual presence and for which relevant sensorimotor contingencies are difficult to identify. On alternative “predictive processing” theories, perceptual content emerges from probabilistic inference on the external causes of sensory signals, however, this view has addressed neither the problem of perceptual presence nor synesthesia. Here, I describe a theory of predictive perception of sensorimotor contingencies which (1) accounts for perceptual presence in normal perception, as well as its absence in synesthesia, and (2) operationalizes the notion of sensorimotor contingencies and their mastery. The core idea is that generative models underlying perception incorporate explicitly counterfactual elements related to how sensory inputs would change on the basis of a broad repertoire of possible actions, even if those actions are not performed. These “counterfactually-rich” generative models encode sensorimotor contingencies related to repertoires of sensorimotor dependencies, with counterfactual richness determining the degree of perceptual presence associated with a stimulus. While the generative models underlying normal perception are typically counterfactually rich (reflecting a large repertoire of possible sensorimotor dependencies), those underlying synesthetic concurrents are hypothesized to be counterfactually poor. In addition to accounting for the phenomenology of synesthesia, the theory naturally accommodates phenomenological differences between a range of experiential states including dreaming, hallucination, and the like. It may also lead to a new view of the (in)determinacy of normal perception
    corecore