36 research outputs found

    Research Letter Discrimination between Ictal and Seizure-Free EEG Signals Using Empirical Mode Decomposition

    Get PDF
    A new method for analysis of electroencephalogram (EEG) signals using empirical mode decomposition (EMD) and FourierBessel (FB) expansion has been presented in this paper. The EMD decomposes an EEG signal into a finite set of band-limited signals termed intrinsic mode functions (IMFs). The mean frequency (MF) for each IMF has been computed using FB expansion. The MF measure of the IMFs has been used as a feature in order to identify the difference between ictal and seizure-free intracranial EEG signals. It has been shown that the MF feature of the IMFs has provided statistically significant difference between ictal and seizure-free EEG signals. Simulation results are included to illustrate the effectiveness of the proposed method

    Logistic Regression with Tangent Space based Cross-Subject Learning for Enhancing Motor Imagery Classification

    Get PDF
    Brain-computer interface (BCI) performance is often impacted due to the inherent non-stationarity in the recorded EEG signals coupled with high variability across subjects. This study proposes a novel method using Logistic Regression with Tangent Space-based Transfer Learning (LR-TSTL) for motor imagery (MI)-based BCI classification problems. The single-trial covariance matrix (CM) features computed from the EEG signals are transformed into a Riemannian geometry frame and tangent space features are computed by considering the lower triangular matrix. These are then further classified using the logistic regression model to improve classification accuracy. The performance of LR-TSTL is tested on healthy subjects’ dataset as well as on stroke patients’ dataset. As compared to existing within-subject learning approaches the proposed method gave an equivalent or better performance in terms of average classification accuracy (78.95 11.68%), while applied as leave one-out cross-subject learning for healthy subjects. Interestingly, for the patient dataset LR-TSTL significantly (p <0.05) outperformed the current benchmark performance by achieving an average classification accuracy of 81.75 6.88%. The results show that the proposed method for cross-subject learning has the potential to realize the next generation of calibration-free BCI technologies with enhanced practical usability especially in the case of neurorehabilitative BCI designs for stroke patients

    A Sliding Window Common Spatial Pattern for Enhancing Motor Imagery Classification in EEG-BCI

    Get PDF
    Accurate binary classification of electroencephalography (EEG) signals is a challenging task for the development of motor imagery (MI) brain computer interface (BCI) systems. In this study two sliding window techniques are proposed to enhance binary classification of motor imagery (MI). The first one calculates the longest consecutive repetition (LCR) of the sequence of prediction of all the sliding windows which is named as SW-LCR. The second calculates the mode of the sequence of prediction of all the sliding windows and is named SW-Mode. Common spatial pattern (CSP) is used for extracting features with linear discriminant analysis (LDA) used for classification of each time window. Both the SW-LCR and SW-Mode are applied on publicly available BCI Competition IV-2a dataset of healthy individuals and on a stroke patients dataset. As compared to the existing state-of-the-art the SW-LCR performed better in the case of healthy individuals and SW-Mode performed better on stroke patients dataset for left vs. right hand MI with lower standard deviation. For both the datasets the classification accuracy (CA) was approximately 80% and kappa (&#x03BA;) was 0.6. The results show that the sliding window based prediction of MI using SW-LCR and SW-Mode is robust against inter-trial and inter-session inconsistencies in the time of activation within a trial and thus can lead to reliable performance in a neurorehabilitative BCI setting

    Discrimination between Ictal and Seizure-Free EEG Signals Using Empirical Mode Decomposition

    Get PDF
    A new method for analysis of electroencephalogram (EEG) signals using empirical mode decomposition (EMD) and Fourier-Bessel (FB) expansion has been presented in this paper. The EMD decomposes an EEG signal into a finite set of band-limited signals termed intrinsic mode functions (IMFs). The mean frequency (MF) for each IMF has been computed using FB expansion. The MF measure of the IMFs has been used as a feature in order to identify the difference between ictal and seizure-free intracranial EEG signals. It has been shown that the MF feature of the IMFs has provided statistically significant difference between ictal and seizure-free EEG signals. Simulation results are included to illustrate the effectiveness of the proposed method
    corecore