9 research outputs found

    A Diet Rich in Saturated Fat and Cholesterol Aggravates the Effect of Bacterial Lipopolysaccharide on Alveolar Bone Loss in a Rabbit Model of Periodontal Disease

    Get PDF
    Increasing evidence connects periodontitis with a variety of systemic diseases, including metabolic syndrome, atherosclerosis, and non-alcoholic fatty liver disease (NAFLD). The proposal of this study was to evaluate the role of diets rich in saturated fat and cholesterol in some aspects of periodontal diseases in a lipopolysaccharide (LPS)-induced model of periodontal disease in rabbits and to assess the influence of a periodontal intervention on hyperlipidemia, atherosclerosis, and NAFLD progression to non-alcoholic steatohepatitis. Male rabbits were maintained on a commercial standard diet or a diet rich in saturated fat (3% lard w/w) and cholesterol (1.3% w/w) (HFD) for 40 days. Half of the rabbits on each diet were treated 2 days per week with intragingival injections of LPS from Porphyromonas gingivalis. Morphometric analyses revealed that LPS induced higher alveolar bone loss (ABL) around the first premolar in animals receiving standard diets, which was exacerbated by the HFD diet. A higher score of acinar inflammation in the liver and higher blood levels of triglycerides and phospholipids were found in HFD-fed rabbits receiving LPS. These results suggest that certain dietary habits can exacerbate some aspects of periodontitis and that bad periodontal health can contribute to dyslipidemia and promote NAFLD progression, but only under certain conditions

    A diet rich in saturated fat and cholesterol aggravates the effect of bacterial lipopolysaccharide on alveolar bone loss in a rabbit model of periodontal disease

    Get PDF
    Increasing evidence connects periodontitis with a variety of systemic diseases, including metabolic syndrome, atherosclerosis, and non-alcoholic fatty liver disease (NAFLD). The proposal of this study was to evaluate the role of diets rich in saturated fat and cholesterol in some aspects of periodontal diseases in a lipopolysaccharide (LPS)-induced model of periodontal disease in rabbits and to assess the influence of a periodontal intervention on hyperlipidemia, atherosclerosis, and NAFLD progression to non-alcoholic steatohepatitis. Male rabbits were maintained on a commercial standard diet or a diet rich in saturated fat (3% lard w/w) and cholesterol (1.3% w/w) (HFD) for 40 days. Half of the rabbits on each diet were treated 2 days per week with intragingival injections of LPS from Porphyromonas gingivalis. Morphometric analyses revealed that LPS induced higher alveolar bone loss (ABL) around the first premolar in animals receiving standard diets, which was exacerbated by the HFD diet. A higher score of acinar inflammation in the liver and higher blood levels of triglycerides and phospholipids were found in HFD-fed rabbits receiving LPS. These results suggest that certain dietary habits can exacerbate some aspects of periodontitis and that bad periodontal health can contribute to dyslipidemia and promote NAFLD progression, but only under certain conditions

    Autologous patient-derived exhausted nano T-cells exploit tumor immune evasion to engage an effective cancer therapy

    Get PDF
    Background Active targeting by surface-modified nanoplatforms enables a more precise and elevated accumulation of nanoparticles within the tumor, thereby enhancing drug delivery and efficacy for a successful cancer treatment. However, surface functionalization involves complex procedures that increase costs and timelines, presenting challenges for clinical implementation. Biomimetic nanoparticles (BNPs) have emerged as unique drug delivery platforms that overcome the limitations of actively targeted nanoparticles. Nevertheless, BNPs coated with unmodified cells show reduced functionalities such as specific tumor targeting, decreasing the therapeutic efficacy. Those challenges can be overcome by engineering non-patient-derived cells for BNP coating, but these are complex and cost-effective approaches that hinder their wider clinical application. Here we present an immune-driven strategy to improve nanotherapeutic delivery to tumors. Our unique perspective harnesses T-cell exhaustion and tumor immune evasion to develop a groundbreaking new class of BNPs crafted from exhausted T-cells (NExT) of triple-negative breast cancer (TNBC) patients by specific culture methods without sophisticated engineering. Methods NExT were generated by coating PLGA (poly(lactic-co-glycolic acid)) nanoparticles with TNBC-derived T-cells exhausted in vitro by acute activation. Physicochemical characterization of NExT was made by dynamic light scattering, electrophoretic light scattering and transmission electron microscopy, and preservation and orientation of immune checkpoint receptors by flow cytometry. The efficacy of chemotherapy-loaded NExT was assessed in TNBC cell lines in vitro. In vivo toxicity was made in CD1 mice. Biodistribution and therapeutic activity of NExT were determined in cell-line- and autologous patient-derived xenografts in immunodeficient mice. Results We report a cost-effective approach with a good performance that provides NExT naturally endowed with immune checkpoint receptors (PD1, LAG3, TIM3), augmenting specific tumor targeting by engaging cognate ligands, enhancing the therapeutic efficacy of chemotherapy, and disrupting the PD1/PDL1 axis in an immunotherapy-like way. Autologous patient-derived NExT revealed exceptional intratumor accumulation, heightened chemotherapeutic index and efficiency, and targeted the tumor stroma in a PDL1+ patient-derived xenograft model of triple-negative breast cancer. Conclusions These advantages underline the potential of autologous patient-derived NExT to revolutionize tailored adoptive cancer nanotherapy and chemoimmunotherapy, which endorses their widespread clinical application of autologous patient-derived NExT.This work was funded by Instituto de Salud Carlos III (grants PI19/01533, CP19/00029 to S.G.-P.), Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía (grant P29/22/02 to S.G.-P.), by MCIN/AE (grant RTI2018.101309B-C22 and PID2022-140151OB-C22 funded by MCIN/AEI https://doi.org/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR to J.A.M.), the Chair “Doctors Galera-Requena in cancer stem cell research” (CMC-CTS963 to J.A.M.), the European Regional Development Fund (European Union), Fundación Científica Asociación Española Contra el Cáncer, Junta Provincial de Jaén (AECC) (grant PRDJA19001BLAY to J.L.B.-C.,), Proyectos Intramurales ibs.GRANADA (grant INTRAIBS-2021-09 to C.G.-L.), Junta de Andalucía, Plan Andaluz de Investigación, Desarrollo e Innovación (grant POSTDOC_21_638 to C.G.-L.), Ministerio de Ciencia, Innovación y Universidades (grant FPU19/04450 to A.L.-T.), Junta de Andalucía, Consejería de Transformación Económica, Industria, Conocimiento y Universidades (grant DOC_01686 to J.C.).Peer reviewe

    Hypoxia-Inducible Factor-1 Alpha Expression Is Predictive of Pathological Complete Response in Patients with Breast Cancer Receiving Neoadjuvant Chemotherapy

    No full text
    To demonstrate the value of hypoxia-inducible factor-1α (HIF-1α) in predicting response in patients with breast cancer receiving standard neoadjuvant chemotherapy (NAC). Methods: Ninety-five women enrolled in two prospective studies underwent biopsies for the histopathological diagnosis of breast carcinoma before receiving NAC, based on anthracyclines and taxanes. For expression of HIF-1α, EGFR, pAKT and pMAPK, tumor samples were analyzed by immunohistochemistry in tissues microarrays. Standard statistical methods (Pearson chi-square test, Fisher exact test, Kruskal–Wallis test, Mann–Whitney test and Kaplan–Meier method) were used to study the association of HIF-1α with tumor response, survival and other clinicopathologic variables/biomarkers. Results: HIF-1α expression was positive in 35 (39.7%) cases and was significantly associated to complete pathological response (pCR) (p = 0.014). HIF-1α expression was correlated positively with tumor grade (p = 0.015) and Ki-67 expression (p = 0.001) and negativity with progesterone receptors (PR) (p = 0.04) and luminal A phenotype expression (p = 0.005). No correlation was found between HIF-1α expression and EGFR, pAKT and pMAPK. In terms of survival, HIF-1α expression was associated with a significantly shorter disease-free survival (p = 0.013), being identified as an independent prognostic factor in multivariate analysis. Conclusions: Overexpression of HIF-1α is a predictor of pCR and shorter DFS; it would be valuable to confirm these results in prospective studies

    Sunflower Oil but Not Fish Oil Resembles Positive Effects of Virgin Olive Oil on Aged Pancreas after Life-Long Coenzyme Q Addition

    No full text
    An adequate pancreatic structure is necessary for optimal organ function. Structural changes are critical in the development of age-related pancreatic disorders. In this context, it has been reported that different pancreatic compartments from rats were affected according to the fat composition consumed. Since there is a close relationship between mitochondria, oxidative stress and aging, an experimental approach has been developed to gain more insight into this process in the pancreas. A low dosage of coenzyme Q was administered life-long in rats in order to try to prevent pancreatic aging-related alterations associated to some dietary fat sources. According to that, three groups of rats were fed normocaloric diets containing Coenzyme Q (CoQ) for two years, where virgin olive, sunflower, or fish oil was included as unique fat source. Pancreatic samples for microscopy and blood samples were collected at the moment of euthanasia. The main finding is that CoQ supplementation gives different results according to fat used in diet. When sunflower oil was the main fat in the diet, CoQ supplementation seems to improve endocrine pancreas structure and in particular β-cell mass resembling positive effects of virgin olive oil. Conversely, CoQ intake does not seem to improve the structural alterations of exocrine compartment previously observed in fish oil fed rats. Therefore CoQ may improve pancreatic alterations associated to the chronic intake of some dietary fat sources

    Differences reported in the lifespan and aging of male Wistar rats maintained on diets containing fat with different fatty acid profiles (virgin olive, sunflower or fish oils) are not reflected by histopathological lesions found at death in central nervous and endocrine systems.

    No full text
    The present study was designed to examine if dietary fat sources that have shown differences in lifespan and if some aging-related aspects can modulate the range of histopathologic changes in central nervous and endocrine systems that occur during the lifespan of Wistar rats. Moreover, it was attempted to gain insight into the relationship between longevity and the development of the different pathological changes, as well as possible interaction with diet. In order to achieve this, male Wistar rats were randomly assigned to three experimental groups fed semisynthetic and isoenergetic diets from weaning until death with different dietary fat sources, namely virgin olive, sunflower, or fish oil. An individual follow-up until death of each animal was performed. Incidence, severity, and burden of specific or group (i.e., neoplastic or non-neoplastic proliferative and non-proliferative) of lesions was calculated along with individual's disease and individual organ lesion burden. Most of the histopathological lesions found have been described in previous studies. Neoplasms, and in particular pituitary adenomas followed by brain tumors, were the most prevalent lesions found in the rats and the main cause of death involving both systems. Incidence of brain lesions was associated with age-at-death. Assayed dietary fats did not present differential effects on pathological changes occurring in endocrine and central nervous systems throughout rat lifespan

    Male breast cancer: correlation between immunohistochemical subtyping and PAM50 intrinsic subtypes, and the subsequent clinical outcomes.

    No full text
    Male breast cancer is a rare disease that is still poorly understood. It is mainly classified by immunohistochemistry as a luminal disease. In this study, we assess for the first time the correlation between molecular subtypes based on a validated six-marker immunohistochemical panel and PAM50 signature in male breast cancer, and the subsequent clinical outcome of these different subtypes. We collected 67 surgical specimens of invasive male breast cancer from four different Spanish pathology laboratories. Immunohistochemical staining for the six-marker panel was performed on tissue microarrays. PAM50 subtypes were determined in a research-use-only nCounter Analysis System. We explored the association of immunohistochemical and PAM50 subtypes. Overall survival and disease-free survival were analyzed in the different subtypes of each classification. The distribution of tumor molecular subtypes according PAM50 was: 60% luminal B, 30% luminal A and 10% human epidermal growth factor receptor 2 (Her2) enriched. Only one Her2-enriched tumor was also positive by immunohistochemistry and was treated with trastuzumab. None of the tumors were basal-like. Using immunohistochemical surrogates, 51% of the tumors were luminal B, 44% luminal A, 4% triple-negative and 1% Her2-positive. The clinicopathological characteristics did not differ significantly between immunohistochemical and PAM50 subtypes. We found a significant worse overall survival in Her2-enriched compared with luminal tumors. Male breast cancer seems to be mainly a genomic luminal disease with a predominance of the luminal B subtype. In addition, we found a proportion of patients with Her2-negative by immunohistochemistry but Her2-enriched profile by PAM50 tumors with a worse outcome compared with luminal subtypes that may benefit from anti-Her2 therapies
    corecore