2,336 research outputs found
Aerodynamic characteristics of forebody and nose strakes based on F-16 wind tunnel test experience. Volume 1: Summary and analysis
The YF-16 and F-16 developmental wind tunnel test program was reviewed. Geometrical descriptions, general comments, representative data, and the initial efforts toward the development of design guides for the application of strakes to future aircraft are presented
Hadron Helicity Violation in Exclusive Processes: Quantitative Calculations in Leading Order QCD
We study a new mechanism for hadronic helicity flip in high energy hard
exclusive reactions. The mechanism proceeds in the limit of perfect chiral
symmetry, namely without any need to flip a quark helicity. The fundamental
feature of the new mechanism is the breaking of rotational symmetry of the hard
collision by a scattering plane in processes involving independent quark
scattering. We show that in the impulse approximation there is no evidence for
of the helicity violating process as the energy or momentum transfer is
increased over the region 1 GeV^2 < Q^2 < 100 GeV^2. In the asymptotic region
Q^2> 1000 GeV^2, a saddle point approximation with doubly logarithmic accuracy
yields suppression by a fraction of power of Q^2. ``Chirally--odd" exclusive
wave functions which carry non--zero orbital angular momentum and yet are
leading order in the high energy limit, play an important role.Comment: uuencoded LaTeX file (21 pages) and PostScript figure
Systematic Analysis Method for Color Transparency Experiments
We introduce a data analysis procedure for color transparency experiments
which is considerably less model dependent than the transparency ratio method.
The new method is based on fitting the shape of the A dependence of the nuclear
cross section at fixed momentum transfer to determine the effective attenuation
cross section for hadrons propagating through the nucleus. The procedure does
not require assumptions about the hard scattering rate inside the nuclear
medium. Instead, the hard scattering rate is deduced directly from the data.
The only theoretical input necessary is in modelling the attenuation due to the
nuclear medium, for which we use a simple exponential law. We apply this
procedure to the Brookhaven experiment of Carroll et al and find that it
clearly shows color transparency: the effective attenuation cross section in
events with momentum transfer is approximately $40\ mb\ (2.2\
GeV^2/Q^2)$. The fit to the data also supports the idea that the hard
scattering inside the nuclear medium is closer to perturbative QCD predictions
than is the scattering of isolated protons in free space. We also discuss the
application of our approach to electroproduction experiments.Comment: 11 pages, 11 figures (figures not included, available upon request),
report # KU-HEP-92-2
Experimental study of the effects of Reynolds number on high angle of attack aerodynamic characteristics of forebodies during rotary motion
The National Aeronautics and Space Administration and the Defense Research Agency (United Kingdom) have ongoing experimental research programs in rotary-flow aerodynamics. A cooperative effort between the two agencies is currently underway to collect an extensive database for the development of high angle of attack computational methods to predict the effects of Reynolds number on the forebody flowfield at dynamic conditions, as well as to study the use of low Reynolds number data for the evaluation of high Reynolds number characteristics. Rotary balance experiments, including force and moment and surface pressure measurements, were conducted on circular and rectangular aftbodies with hemispherical and ogive noses at the Bedford and Farnborough wind tunnel facilities in the United Kingdom. The bodies were tested at 60 and 90 deg angle of attack for a wide range of Reynolds numbers in order to observe the effects of laminar, transitional, and turbulent flow separation on the forebody characteristics when rolling about the velocity vector
Cardiopulmonary resuscitation with interposed abdominal compression in dogs
This study was conducted to evaluate the hemodynamic effectiveness of a new modification of cardiopulmonary resuscitation (CPR), termed interposed abdominal compression- CPR (IAC-CPR). IAC-CPR utilizes all the steps of standard CPR with the addition of abdominal compressions interposed during the release phase of chest compression. Ventricular fibrillation was induced electrically in 10 anesthetized dogs, and either IAC-CPR or standard CPR was initiated while arterial and venous blood pressures and cardiac output were monitored. The two CPR methods were alternated every three minutes over a period of thirty minutes. The addition of interposed abdominal compressions to standard CPR improved arterial pressures and perfusion in 10/10 dogs. Brachial arterial blood pressure averaged 87/32 mmHg during IAC-CPR vs. 58/16 mmHg during standard CPR. Cardiac output (±S.E.) averaged 24.2 ±5.7 ml/min/kg during IAC-CPR vs. 13.8 ±2.6 ml/min/kg during standard CPR. IAC-CPR requires no extra mechanical equipment, and, if proven effective in human trials, may improve resuscitation success in the field and in the hospital
Locality of quark-hadron duality and deviations from quark counting rules above resonance region
We show how deviations from the dimensional scaling laws for exclusive
processes may be related to a breakdown in the locality of quark-hadron
duality. The essential principles are illustrated in a pedagogic model of a
composite system with two spinless charged constituents, for which a dual
picture for the low-energy resonance phenomena and high-energy scaling behavior
can be established. We introduce the concept of "restricted locality" of
quark-hadron duality and show how this results in deviations from the pQCD
quark counting rules above the resonance region. In particular it can be a
possible source for oscillations about the smooth quark counting rule, as seen
e.g. in the 90-degree differential cross sections for .Comment: The way to present Eqs. (2), (4), (7) are changed while physics
contents and calculations are left intact; Additional explanations for the
forward and large-angle duality are added; Three more references are
included; Version to appear on Phys. Rev. Let
Nucleon Structure Functions from a Chiral Soliton in the Infinite Momentum Frame
We study the frame dependence of nucleon structure functions obtained within
a chiral soliton model for the nucleon. Employing light cone coordinates and
introducing collective coordinates together with their conjugate momenta,
translational invariance of the solitonic quark fields (which describe the
nucleon as a localized object) is restored. This formulation allows us to
perform a Lorentz boost to the infinite momentum frame of the nucleon. The
major result is that the Lorentz contraction associated with this boost causes
the leading twist contribution to the structure functions to properly vanish
when the Bjorken variable exceeds unity. Furthermore we demonstrate that
for structure functions calculated in the valence quark approximation to the
Nambu--Jona--Lasinio chiral soliton model the Lorentz contraction also has
significant effects on the structure functions for moderate values of the
Bjorken variable .Comment: 16 pages, 1 figure, revised version to be published in Int. J. Mod.
Phys.
Exclusive Hadronic Processes and Color Transparency
We review the current status of high energy exclusive processes and color
transparency.Comment: 17 pages, 8 figures, based on talk given at International Symposium
on Nuclear Physics, Mumbai, Dec 18-22, 200
Behavioral Deficits and Axonal Injury Persistence after Rotational Head Injury Are Direction Dependent
Pigs continue to grow in importance as a tool in neuroscience. However, behavioral tests that have been validated in the rodent model do not translate well to pigs because of their very different responses to behavioral stimuli. We refined metrics for assessing porcine open field behavior to detect a wide spectrum of clinically relevant behaviors in the piglet post-traumatic brain injury (TBI). Female neonatal piglets underwent a rapid non-impact head rotation in the sagittal plane (n=8 evaluable) or were instrumented shams (n=7 evaluable). Open field testing was conducted 1 day prior to injury (day â1) in order to establish an individual baseline for analysis, and at days +1 and +4 after injury. Animals were then killed on day +6 after injury for neuropathological assessment of axonal injury. Injured piglets were less interested in interacting with environmental stimuli and had a lower activity level than did shams. These data were compared with previously published data for axial rotational injuries in neonatal piglets. Acute behavioral outcomes post-TBI showed a dependence on the rotational plane of the brain injury, with animals with sagittal injuries demonstrating a greater level of inactivity and less random usage of the open field space than those with axial injuries. The persistence of axonal injury is also dependent on the rotational plane, with sagittal rotations causing more prolonged injuries than axial rotations. These results are consistent with animal studies, finite element models, and studies of concussions in football, which have all demonstrated differences in injury severity depending upon the direction of head impact rotation
- âŠ