3 research outputs found

    Biodiversity of intertidal food webs in response to warming across latitudes

    No full text
    Global warming will affect food-web structure and species persistence, and real world data is needed for better prediction. Combining species counts and temperature data from rock pools with dynamic modelling predicts biodiversity increases in arctic to temperate regions and declines in the tropics. Global warming threatens community stability and biodiversity around the globe. Knowledge of the mechanisms underlying the responses to rising temperatures depends heavily on generic food-web models that do not account for changes in network structure along latitudes and temperature gradients. Using 124 marine rock-pool food webs sampled across four continents, we show that despite substantial variation in ambient temperature (mean 11.5-28.4 degrees C), similar empirical food-web and body-mass structures emerge. We have used dynamic modelling to test whether communities from warmer regions are more sensitive to warming and found a general hump-shaped relationship between simulated biodiversity and temperature (gradient from 0-50 degrees C). This implies that an expected anthropogenic global warming of 4 degrees C should increase biodiversity in arctic to temperate regions while biodiversity in tropical regions should decrease. Interestingly, simulations of synthetic networks did not yield similar results, which stresses the importance of considering the specificities of natural food webs for predicting community responses to environmental changes.German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig - German Research Foundation [FZT 118]Portuguese Foundation for Science and TechnologyPortuguese Foundation for Science and Technology [SFRH/BD/109618/2015, UID/MAR/04292/2019, UID/Multi/04326/2019, PTDC/MAR-EST/2141/2012]info:eu-repo/semantics/publishedVersio

    Ecological stability in response to warming

    No full text
    That species' biological rates including metabolism, growth and feeding scale with temperature is well established from warming experiments(1). The interactive influence of these changes on population dynamics, however, remains uncertain. As a result, uncertainty about ecological stability in response under warming remains correspondingly high. In previous studies, severe consumer extinction waves in warmed microcosms(2) were explained in terms of warming-induced destabilization of population oscillations(3). Here, we show that warming stabilizes predator-prey dynamics at the risk of predator extinction. Our results are based on meta-analyses of a global database of temperature effects on metabolic and feeding rates and maximum population size that includes species of different phylogenetic groups and ecosystem types. To unravel population-level consequences we parameterized a bioenergetic predator-prey model(4) and simulated warming effects within ecological, non-evolutionary timescales. In contrast to previous studies(3), we find that warming stabilized population oscillations up to a threshold temperature, which is true for most of the possible parameter combinations. Beyond the threshold level, warming caused predator extinction due to starvation. Predictions were tested in a microbial predator-prey system. Together, our results indicate a major change in how we expect climate change to alter natural ecosystems: warming should increase population stability while undermining species diversity

    Ecological stability in response to warming

    No full text
    That species' biological rates including metabolism, growth and feeding scale with temperature is well established from warming experiments(1). The interactive influence of these changes on population dynamics, however, remains uncertain. As a result, uncertainty about ecological stability in response under warming remains correspondingly high. In previous studies, severe consumer extinction waves in warmed microcosms(2) were explained in terms of warming-induced destabilization of population oscillations(3). Here, we show that warming stabilizes predator-prey dynamics at the risk of predator extinction. Our results are based on meta-analyses of a global database of temperature effects on metabolic and feeding rates and maximum population size that includes species of different phylogenetic groups and ecosystem types. To unravel population-level consequences we parameterized a bioenergetic predator-prey model(4) and simulated warming effects within ecological, non-evolutionary timescales. In contrast to previous studies(3), we find that warming stabilized population oscillations up to a threshold temperature, which is true for most of the possible parameter combinations. Beyond the threshold level, warming caused predator extinction due to starvation. Predictions were tested in a microbial predator-prey system. Together, our results indicate a major change in how we expect climate change to alter natural ecosystems: warming should increase population stability while undermining species diversity
    corecore