12 research outputs found

    Genetic Separation of FK506 Susceptibility and Drug Transport in the Yeast Pdr5 ATP-binding Cassette Multidrug Resistance Transporter

    No full text
    Overexpression of the yeast Pdr5 ATP-binding cassette transporter leads to pleiotropic drug resistance to a variety of structurally unrelated cytotoxic compounds. To identify Pdr5 residues involved in substrate recognition and/or drug transport, we used a combination of random in vitro mutagenesis and phenotypic screening to isolate novel mutant Pdr5 transporters with altered substrate specificity. A plasmid library containing randomly mutagenized PDR5 genes was transformed into appropriate drug-sensitive yeast cells followed by phenotypic selection of Pdr5 mutants. Selected mutant Pdr5 transporters were analyzed with respect to their expression levels, subcellular localization, drug resistance profiles to cycloheximide, rhodamines, antifungal azoles, steroids, and sensitivity to the inhibitor FK506. DNA sequencing of six PDR5 mutant genes identified amino acids important for substrate recognition, drug transport, and specific inhibition of the Pdr5 transporter. Mutations were found in each nucleotide-binding domain, the transmembrane domain 10, and, most surprisingly, even in predicted extracellular hydrophilic loops. At least some point mutations identified appear to influence folding of Pdr5, suggesting that the folded structure is a major substrate specificity determinant. Surprisingly, a S1360F exchange in transmembrane domain 10 not only caused limited substrate specificity, but also abolished Pdr5 susceptibility to inhibition by the immunosuppressant FK506. This is the first report of a mutation in a yeast ATP-binding cassette transporter that allows for the functional separation of substrate transport and inhibitor susceptibility

    The MCAO wavefront sensing system of LINC-NIRVANA: status report

    No full text
    LINC-NIRVANA is an infrared camera that will work in Fizeau interferometric way at the Large Binocular Telescope (LBT). The two beams that will be combined in the camera are corrected by an MCAO system, aiming to cancel the turbulence in a scientific field of view of 2 arcminutes. The MCAO wavefront sensors will be two for each arm, with the task to sense the atmosphere at two different altitudes (the ground one and a second height variable between a few kilometers and a maximum of 15 kilometers). The first wavefront sensor, namely the Ground layer Wavefront sensor (GWS), will drive the secondary adaptive mirror of LBT, while the second wavefront sensor, namely the Mid High layer Wavefront Sensor (MHWS) will drive a commercial deformable mirror which will also have the possibility to be conjugated to the same altitude of the correspondent wavefront sensor. The entire system is of course duplicated for the two telescopes, and is based on the Multiple Field of View (MFoV) Layer Oriented (LO) technique, having thus different FoV to select the suitable references for the two wavefront sensor: the GWS will use the light of an annular field of view from 2 to 6 arcminutes, while the MHWS will use the central 2 arcminutes part of the FoV. After LINC-NIRVANA has accomplished the final design review, we describe the MFoV wavefront sensing system together with its current status
    corecore