30 research outputs found

    Stereotactic Magnetic Resonance-guided Online Adaptive Radiotherapy for Oligometastatic Breast Cancer: A Case Report.

    Get PDF
    We present a case of durable local control achieved in a patient treated with stereotactic magnetic resonance-guided adaptive radiation therapy (SMART) for an abdominal lymph node in the setting of oligometastatic breast cancer. A 50-year-old woman with a history of triple positive metastatic invasive ductal carcinoma of the left breast, stage IV (T3N2M1), underwent neoadjuvant chemotherapy, mastectomy, adjuvant radiotherapy and maintenance hormonal treatment with HER2 targeted therapies. At 20 months after definitive treatment of her primary, imaging showed an isolated progressive enlargement of lymph nodes between hepatic segment V/IVB and the neck of the pancreas. Radiofrequency ablation was considered, however, this approach was decided not to be optimal due to the proximity to stomach, and pancreatic duct. The patient was treated with SMART for 40 Gray in 5 fractions. Two and a half years later, the patient remains without evidence of disease progression. She experienced Grade 2 acute and late toxicity that was successfully managed with medications. This experience shows that SMART is a feasible and effective treatment to control the abdominal oligometastatic disease for breast cancer

    Stereotactic MRI-guided Adaptive Radiation Therapy (SMART) for Locally Advanced Pancreatic Cancer: A Promising Approach.

    Get PDF
    Locally advanced pancreatic cancer (LAPC) is characterized by poor prognosis and low response durability with standard-of-care chemotherapy or chemoradiotherapy treatment. Stereotactic body radiation therapy (SBRT), which has a shorter treatment course than conventionally fractionated radiotherapy and allows for better integration with systemic therapy, may confer a survival benefit but is limited by gastrointestinal toxicity. Stereotactic MRI-guided adaptive radiation therapy (SMART) has recently gained attention for its potential to increase treatment precision and thus minimize this toxicity through continuous real-time soft-tissue imaging during radiotherapy. The case presented here illustrates the promising outcome of a 69-year-old male patient with LAPC treated with SMART with daily adaptive planning and respiratory-gated technique

    Surgical outcomes after neoadjuvant ablative dose radiation among patients with borderline resectable and locally advanced pancreas cancer from the multi-institutional phase 2 Stereotactic MR-Guided Adaptive Radiation Therapy (SMART) trial

    Get PDF
    Background: Acute grade 3+ toxicity was rare in the multi-institutional phase 2 stereotactic MR-guided on-table adaptive radiation therapy (SMART) trial (NCT03621644) for locally advanced and borderline resectable pancreatic cancer (LAPC/BRPC). Surgery may be considered after ablative SMART although the feasibility and safety of this is not well understood. Postoperative outcomes of the subset of patients in the SMART trial are examined here. Methods: Trial eligibility included BRPC or LAPC without metastases after a minimum of 3 months of induction chemotherapy. All patients received SMART prescribed to 50 Gy in 5 fractions using an integrated 0.35T MR-radiation therapy device equipped with cutting edge soft tissue tracking, automatic beam gating, and on-table adaptive replanning. Surgery was permitted after SMART, often after multi-disciplinary review. Perioperative details and postoperative outcomes, including morbidity, mortality, and overall survival (OS), were analyzed. Results: 136 patients across 13 sites were enrolled between 2019-2022. 44 patients (32.4%) had surgery after SMART (33 BRPC, 11 LAPC). Surgical procedures included pancreaticoduodenectomy (81.8%), distal pancreatectomy with splenectomy (9.1%), total pancreatectomy (6.8%), and distal pancreatectomy with celiac axis resection (2.3%). 52.3% required vascular resection/reconstruction, a majority of which were venous resections (65.2%), with a smaller proportion needing both venous/ arterial (21.7%), or arterial (13%). Surgery was performed after a mean 51.4 ± 52.8 days from SMART. Postoperative hospitalization was 10.5 ± 8.9 days. Nine patients (20.5%) had Clavien-Dindo complications of grade III or higher; 3 deaths resulted from post-pancreatectomy hemorrhage in patients who had portal vein resection. One-year OS in patients who had surgery versus no surgery after SMART was 66% vs. 43%, respectively. Conclusions: These are the first prospectively evaluated surgical outcomes after 5-fraction ablative SMART for BRPC/LAPC. The rate of surgery for BRPC compares favorably to radiated patients on the Alliance A021501 trial. Despite the use of ablative radiation dose and frequent need for vascular resection, the incidence of serious surgical complications was similar to what is reported after non-ablative radiation therapy. However, several deaths occurred after surgery and we therefore we urge caution when considering surgery after ablative radiation therapy. Further analysis of other variables such as the time between SMART and surgery, approaches to vascular resections, and discrete events such as delayed gastric emptying, operative duration, and post-operative pancreatic fistula are needed to better understand the surgical morbidity seen in these patients

    The Relationship Between Clinical Benefit and Receipt of Curative Therapy for Prostate Cancer

    Full text link

    The Relationship Between Clinical Benefit and Receipt of Curative Therapy for Prostate Cancer

    No full text

    Identifying predictors of on-table adaptation for pancreas stereotactic body radiotherapy (SBRT)

    No full text
    Purpose: To identify any clinical or dosimetric parameters that predict which individuals may benefit from on-table adaptation during pancreas stereotactic body radiotherapy (SBRT) with MRI-guided radiotherapy. Methods and materials: This was a retrospective study of patients undergoing MRI-guided SBRT from 2016 to 2022. Pre-treatment clinical variables and dosimetric parameters on the patient’s simulation scan were recorded for each SBRT course, and their ability to predict for on-table adaptation was analyzed using ordinal logistic regression. The outcome measure was number of fractions adapted. Results: Sixty-three SBRT courses consisting of 315 fractions were analyzed. Median prescription dose was 40 Gy in five fractions (range, 33–50 Gy); 52% and 48% of courses were prescribed ≤40 Gy and >40 Gy, respectively. The median minimum dose delivered to 95% (D95) of the gross tumor volume (GTV) and planning target volume (PTV) was 40.1 Gy and 37.0 Gy, respectively. Median number of fractions adapted per course was three, with 58% (183 out of 315) total fractions adapted. On univariable analysis, the prescription dose (>40 Gy vs ≤40 Gy), GTV volume, stomach V20 and V25, duodenum V20 and dose maximum, large bowel V33 and V35, GTV dose minimum, PTV dose minimum, and gradient index were significant determinants for adaptation (all p < 0.05). On multivariable analysis, only the prescription dose was significant (adjusted odds ratio 19.7, p = 0.005), but did not remain significant after multiple test correction (p = 0.08). Conclusions: The likelihood of needing on-table adaptation could not be reliably predicted a priori using pre-treatment clinical characteristics, dosimetry to nearby organs at risk, or other dosimetric parameters based on the patient’s anatomy at the time of simulation, suggesting the critical importance of day-to-day variations in anatomy and increasing access to adaptive technology for pancreas SBRT. A higher (ablative) prescription dose was associated with increased use of adaptation
    corecore