2 research outputs found

    Using a new high-throughput video-tracking platform to assess behavioural changes in Daphnia magna exposed to neuro-active drugs

    Get PDF
    © 2019. ElsevierOne of the major challenges that faces today regulatory risk assessment is to speed up the way of assessing threshold sublethal detrimental effects of existing and new chemical products. Recently advances in imaging allows to monitor in real time the behaviour of individuals under a given stress. Light is a common stress for many different organisms. Fish larvae and many invertebrate species respond to light altering their behaviour. The water flea Daphnia magna as many other zooplanktonic species has a marked diel vertical phototactic swimming behaviour against light due to fish predation. The aim of this study was to develop a high throughput image analysis to study changes in the vertical swimming behaviour to light of D. magna first reproductive adult females exposed to 0.1 and 1 µg/L of four psychiatric drugs: diazepam, fluoxetine, propranolol and carbamazepine during their entire life. Experiments were conducted using a new custom designed vertical oriented four 50 mL chamber device controlled by the Noldus software (Netherlands). Changes in speed, preferred area (bottom vs upper areas) and animal aggregation were analysed using groups of animals under consecutive periods of dark and apical light stimulus of different intensities. Obtained results indicated that light intensity increased the speed but low light intensities allowed to better discriminate individual responses to the studied drugs. The four tested drugs decreased the response of exposed organisms to light: individuals move less, were closer to the bottom and at low light intensities were closer each other. At high light intensities, however, exposed individuals were less aggregated. Propranolol, carbamazepine and fluoxetine were the compounds effecting most the behaviour. Our results indicated that psychiatric drugs at environmental relevant concentrations alter the vertical phototactic behaviour of D. magna individuals and that it is possible to develop appropriate high-throughput image analysis devices to measure those responses.Peer ReviewedPostprint (author's final draft

    Low concentrations of ciprofloxacin alone and in combination with paracetamol induce oxidative stress, upregulation of apoptotic-related genes, histological alterations in the liver, and genotoxicity in Danio rerio

    No full text
    Nowadays, there are countless articles about the harmful effects of paracetamol (PCM) in non-target organisms. Nonetheless, information regarding the toxicity of ciprofloxacin (CPX) and the CPX-PCM mixture is still limited. Herein, we aimed to evaluate the hepatotoxic and genotoxic effects that ciprofloxacin alone and in combination with paracetamol may induce in Danio rerio adults. For this purpose, we exposed several D. rerio adults to three environmentally relevant concentrations of PCM (0.125, 0.250, and 0.500 μg/L), CPX (0.250, 0.500, and 1 μg/L), and their mixture (0.125 + 0.250, 0.250 + 0.500, and 0.500 + 1 μg/L) for 96 h. The blood samples showed CPX alone and in combination with PCM damaged the liver function of fish by increasing the serum levels of liver enzymes alanine aminotransferase and alkaline phosphatase. Moreover, our histopathological study demonstrated liver of fish suffered several tissue alterations, such as congestion, hyperemia, infiltration, sinusoidal dilatation, macrovascular fatty degeneration, and pyknotic nuclei after exposure to CPX alone and in combination with PCM. Concerning oxidative stress biomarkers and the expression of genes, we demonstrated that CPX and its mixture, with PCM, increased the levels of antioxidant enzymes and oxidative damage biomarkers and altered the expression of Nrf1, Nrf2, BAX, and CASP3, 6, 8, and 9 in the liver of fish. Last but not least, we demonstrated CPX alone and with PCM induced DNA damage via comet assay and increased the frequency of micronuclei in a concentration-dependent manner in fish. Overall, our results let us point out CPX, even at low concentrations, induces hepatotoxic effects in fish and that its combination with PCM has a negative synergic effect in the liver of this organism.This study was made possible by financial support from the Consejo Nacional de Ciencia y Technological (CONACyT, Project 300727) and the Universidad Autonoma Metropolitana-Iztapalapa project: “Indicators of Ecological Integrity and Environmental Health” (2014–2018). The authors would like to thank José Roberto Jerónimo Juárez and Mariela González Rentería for the tissue processing, as well as Anahí Carranza Ramírez and Suleyma Adilene Espinosa, undergraduate students who collaborated in the histopathological analysis.Peer reviewe
    corecore