7 research outputs found

    A comprehensive understanding of ground and optically-excited hyperfine structure of ¹⁶⁷Er³+:Y2SiO5

    Get PDF
    Using high-performance computing techniques and targeted experimental investigation we have developed a predictive crystal-field model of the complex hyperfine structure of ¹⁶⁷Er³+:Y2SiO5 We simultaneously match site-selective spectroscopic data up to 20,000 cm-¹, rotational Zeeman data, and ground- and excited-state hyperfine structure determined from high-resolution Raman-heterodyne spectroscopy on the 1.5 μm telecom transition. We achieve agreement of better than 50 MHz for assigned hyperfine transitions. The successful analysis of the complex hyperfine patterns opens the possibility of systematically searching this whole class of materials for the ZEFOZ transitions that have proved so useful in quantum information applications

    Extending Phenomenological Crystal-Field Methods to C1 Point-Group Symmetry: Characterization of the Optically Excited Hyperfine Structure of Er1673+:Y2SiO5

    Get PDF
    We show that crystal-field calculations for C1 point-group symmetry are possible, and that such calculations can be performed with sufficient accuracy to have substantial utility for rare-earth based quantum information applications. In particular, we perform crystal-field fitting for a C1-symmetry site in 167Er3þ∶Y2SiO5. The calculation simultaneously includes site-selective spectroscopic data up to 20 000 cm−1, rotational Zeeman data, and ground- and excited-state hyperfine structure determined from high-resolution Raman-heterodyne spectroscopy on the 1.5 μm telecom transition. We achieve an agreement of better than 50 MHz for assigned hyperfine transitions. The success of this analysis opens the possibility of systematically evaluating the coherence properties, as well as transition energies and intensities, of any rare-earth ion doped into Y2SiO5

    Group A streptococcal vaccine candidates: potential for the development of a human vaccine

    No full text
    corecore