110 research outputs found
Numerical computation of viscous flows on the lee side of blunt shapes flying at supersonic speeds
A numerical method for solving the parabolic approximation to the steady-state compressible Navier-Stokes equations is examined. The approximation neglects only the streamwise gradients of shear stress. An implicit finite difference method is used which advances the solution downstream from an initial data surface and determines the complete viscous-inviscid flow between the body and bow shock wave. It is necessary that the inviscid portion of the flow field be supersonic. Crossflow separation is determined as part of the solution. The method is applied to a 15 deg sphere-cone at 15 deg angle of attack, and the results are compared with an inviscid method-of-characteristics calculation
Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing
Achieving efficient terahertz (THz) generation using compact turn-key sources
operating at room temperature and modest power levels represents one of the
critical challeges that must be overcome to realize truly practical
applications based on THz. Up to now, the most efficient approaches to THz
generation at room temperature -- relying mainly on optical rectification
schemes -- require intricate phase-matching set-ups and powerful lasers. Here
we show how the unique light-confining properties of triply-resonant photonic
resonators can be tailored to enable dramatic enhancements of the conversion
efficiency of THz generation via nonlinear frequency down-conversion processes.
We predict that this approach can be used to reduce up to three orders of
magnitude the pump powers required to reach quantum-limited conversion
efficiency of THz generation in nonlinear optical material systems.
Furthermore, we propose a realistic design readily accesible experimentally,
both for fabrication and demonstration of optimal THz conversion efficiency at
sub-W power levels
All-Optical Switching Demonstration using Two-Photon Absorption and the Classical Zeno Effect
Low-contrast all-optical Zeno switching has been demonstrated in a silicon
nitride microdisk resonator coupled to a hot atomic vapor. The device is based
on the suppression of the field build-up within a microcavity due to
non-degenerate two-photon absorption. This experiment used one beam in a
resonator and one in free-space due to limitations related to device physics.
These results suggest that a similar scheme with both beams resonant in the
cavity would correspond to input power levels near 20 nW.Comment: 4 pages, 5 figure
A picogram and nanometer scale photonic crystal opto-mechanical cavity
We describe the design, fabrication, and measurement of a cavity
opto-mechanical system consisting of two nanobeams of silicon nitride in the
near-field of each other, forming a so-called "zipper" cavity. A photonic
crystal patterning is applied to the nanobeams to localize optical and
mechanical energy to the same cubic-micron-scale volume. The picrogram-scale
mass of the structure, along with the strong per-photon optical gradient force,
results in a giant optical spring effect. In addition, a novel damping regime
is explored in which the small heat capacity of the zipper cavity results in
blue-detuned opto-mechanical damping.Comment: 15 pages, 4 figure
Controlling photonic structures using optical forces
The downscaling of optical systems to the micro and nano-scale results in
very compliant systems with nanogram-scale masses, which renders them
susceptible to optical forces. Here we show a specially designed resonant
structure for enabling efficient static control of the optical response with
relatively weak repulsive and attractive optical forces. Using attractive
gradient optical forces we demonstrate a static mechanical deformation of up to
20 nanometers in the resonator structure. This deformation is enough to shift
the optical resonances by roughly 80 optical linewidths.Comment: Body: 7 pages, 3 figures; Appendix: 14, 5 figure
Broadband Reconfiguration of OptoMechanical Filters
We demonstrate broad-band reconfiguration of coupled photonic crystal
nanobeam cavities by using optical gradient force induced mechanical actuation.
Propagating waveguide modes that exist over wide wavelength range are used to
actuate the structures and in that way control the resonance of localized
cavity mode. Using this all-optical approach, more than 18 linewidths of tuning
range is demonstrated. Using on-chip temperature self-referencing method that
we developed, we determined that 20 % of the total tuning was due to
optomechanical reconfiguration and the rest due to thermo-optic effects.
Independent control of mechanical and optical resonances of our structures, by
means of optical stiffening, is also demonstrated
Wide-field optical imaging on ELAIS N1, ELAIS N2, First Look Survey and Lockman Hole: observations and source catalogues
We present u-, g-, r-, i- and z-band optical images and associated catalogues taken primarily with the Isaac Newton Telescope Wide Field Camera on the European Large Area ISO Survey (ELAIS) N1 and N2, First Look Survey and Lockman Hole fields comprising a total of 1000 h of integration time over 80 deg^2 and approximately 4.3 million objects. In this paper we outline the observations and data processing and characterize the completeness, reliability, photometric and astrometric accuracy of this data set. All images have been photometrically calibrated using the Sloan Digital Sky Survey and a uniform and homogeneous data set is composed over all the observed fields. Magnitude limits are u, g, r, i, z of 23.9, 24.5, 24.0, 23.3, 22.0 (AB, 5σ). These data have been used for optical identification of past and ongoing projects including the surveys ELAIS, Spitzer Wide-Area Infrared Extragalactic Survey, Spitzer Extragalactic Representative Volume Survey and Herschel Multi-tiered Extragalactic Survey
Silicon Electronic Photonic Integrated Circuits for High Speed Analog to Digital Conversion
Abstract: Integrated optical components on the silicon platform and optically enhanced electronic sampling circuits are demonstrated that enable the fabrication of a variety of electronic-photonic A/D converter chips surpassing currently available technology in sampling speed and resolution
- …