2,576 research outputs found

    On Nonlocal Modified Gravity and its Cosmological Solutions

    Full text link
    During hundred years of General Relativity (GR), many significant gravitational phenomena have been predicted and discovered. General Relativity is still the best theory of gravity. Nevertheless, some (quantum) theoretical and (astrophysical and cosmological) phenomenological difficulties of modern gravity have been motivation to search more general theory of gravity than GR. As a result, many modifications of GR have been considered. One of promising recent investigations is Nonlocal Modified Gravity. In this article we present a brief review of some nonlocal gravity models with their cosmological solutions, in which nonlocality is expressed by an analytic function of the d'Alembert-Beltrami operator \Box. Some new results are also presented.Comment: 16 page

    Both doublecortin and doublecortin-like kinase play a role in cortical interneuron migration

    Get PDF
    Type I lissencephaly, a genetic disease characterized by disorganized cortical layers and gyral abnormalities, is associated with severe cognitive impairment and epilepsy. Two genes, LIS1 and doublecortin (DCX), have been shown to be responsible for a large proportion of cases of type I lissencephaly. Both genes encode microtubule-associated proteins that have been shown to be important for radial migration of cortical pyramidal neurons. To investigate whether DCX also plays a role in cortical interneuron migration, we inactivated DCX in the ganglionic eminence of rat embryonic day 17 brain slices using short hairpin RNA. We found that, when DCX expression was blocked, the migration of interneurons from the ganglionic eminence to the cerebral cortex was slowed but not absent, similar to what had previously been reported for radial neuronal migration. In addition, the processes of DCX-deficient migrating interneurons were more branched than their counterparts in control experiments. These effects were rescued by DCX overexpression, confirming the specificity to DCX inactivation. A similar delay in interneuron migration was observed when Doublecortin-like kinase (DCLK), a microtubule-associated protein related to DCX, was inactivated, although the morphology of the cells was not affected. The importance of these genes in interneuron migration was confirmed by our finding that the cortices of Dcx, Dclk, and Dcx/Dclk mutant mice contained a reduced number of such cells in the cortex and their distribution was different compared with wild-type controls. However, the defect was different for each group of mutant animals, suggesting that DCX and DCLK have distinct roles in cortical interneuron migration

    The role of the lateral prefrontal cortex and anterior cingulate in stimulus–response association reversals

    Get PDF
    Many complex tasks require us to flexibly switch between behavioral rules, associations, and strategies. The prefrontal cerebral cortex is thought to be critical to the performance of such behaviors, although the relative contribution of different components of this structure and associated subcortical regions are not fully understood. We used functional magnetic resonance imaging to measure brain activity during a simple task which required repeated reversals of a rule linking a colored cue and a left/right motor response. Each trial comprised three discrete events separated by variable delay periods. A colored cue instructed which response was to be executed, followed by a go signal which told the subject to execute the response and a feedback instruction which indicated whether to ‘‘hold’’ or ‘‘f lip’’ the rule linking the colored cue and response. The design allowed us to determine which brain regions were recruited by the specific demands of preparing a rule contingent motor response, executing such a response, evaluating the significance of the feedback, and reconfiguring stimulus–response (SR) associations. The results indicate that an increase in neural activity occurs within the anterior cingulate gyrus under conditions in which SR associations are labile. In contrast, lateral frontal regions are activated by unlikely/unexpected perceptual events regardless of their significance for behavior. A network of subcortical structures, including the mediodorsal nucleus of the thalamus and striatum were the only regions showing activity that was exclusively correlated with the neurocognitive demands of reversing SR associations. We conclude that lateral frontal regions act to evaluate the behavioral significance of perceptual events, whereas medial frontal–thalamic circuits are involved in monitoring and reconfiguring SR associations when necessary

    Digital twin control of multi-axis wood CNC machining center based on LinuxCNC

    Get PDF
    Abstrack: This paper presents an application of an open architecture control system implemented on a multi-axis wood computer numerical control milling machining center, as a digital twin control. The development of the digital twin control system was motivated by research and educational requirements, especially in the field of configuring a new control system by “virtual commissioning”, enabling the validation of the developed controls, program verification, and analysis of the machining process and monitoring. The considered wood computer numerical control (CNC) machining system is supported by an equivalent virtual machine in a computer-aided design and computer-aided manufacturing (CAD/CAM) environment, as well as in the control system, as a digital twin. The configured virtual machines are used for the verification of the machining program and programming system via machining simulation, which is extremely important in multi-axis machining. Several test wood workpieces were machined to validate the effectiveness of the developed control system based on LinuxCNC

    Digital Servitization and Firm Performance: Technology Intensity Approach

    Get PDF
    Digital servitization provides radical changes in the offer of products from manufacturing firms. The purpose of this paper is to investigate the impact of digital servitization on manufacturing firm performance and demonstrate the role of technology intensity, product-related services, and digital solutions in different industry sectors. This research collected data from 240 manufacturing firms from the Republic of Serbia under the European manufacturing survey from 2018. Multivariate regression analysis was used to test the impact of product-related services and digital solutions on manufacturing firm performance according to technology intensity. The findings show that the impact of digital servitization is more significant with the higher technology intensity level of the industry sector. Furthermore, the results show that Data-based services based on Big Data Analysis have the highest impact on manufacturing firm performance in all categories of technology intensity. Moreover, results from the fixed panel regression show production managers which combination of product-related services along with digital solutions make the highest financial performance according to the technology intensity of the firm
    corecore