12 research outputs found

    Exome Sequencing and the Management of Neurometabolic Disorders

    Get PDF
    BACKGROUND: Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. METHODS: To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient's clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes. RESULTS: We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%). CONCLUSIONS: Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children's Hospital Foundation and others.)

    Molecular Diagnosis of Pompe Disease in the Genomic Era: Correlation with Acid Alpha-Glucosidase Activity in Dried Blood Spots

    No full text
    Measurement of alpha-glucosidase activity on dried blood spots has been the main method to screen for Pompe disease, but a paradigm shift has been observed in recent years with the incorporation of gene panels and exome sequencing in molecular diagnostic laboratories. An 89-gene panel has been available to Canadian physicians since 2017 and was analyzed in 2030 patients with a suspected muscle disease. Acid alpha-glucosidase activity was measured in parallel in dried blood spots from 1430 patients. Pompe disease was diagnosed in 14 patients, representing 0.69% of our cohort. In 7 other patients, low enzyme activities overlapping those of Pompe disease cases were attributable to the presence of pseudodeficiency alleles. Only two other patients had enzymatic activity in the Pompe disease range, and a single heterozygous pathogenic variant was identified. It is possible that a second variant could have been missed; we suggest that RNA analysis should be considered in such cases. With gene panel testing increasingly being performed as a first-tier analysis of patients with suspected muscle disorders, our study supports the relevance of performing reflex enzymatic activity assay in selected patients, such as those with a single GAA variant identified and those in whom the observed genotype is of uncertain clinical significance

    Peroxisome proliferator-activated receptor \u3b1 antagonism inhibits hepatitis C virus replication

    Get PDF
    Hepatitis C virus (HCV) is a global health problem and a leading cause of liver disease. Here, we demonstrate that the replication of HCV replicon RNA in Huh-7 cells is inhibited by a peroxisome proliferator-activated receptor (PPAR) antagonist, 2-chloro-5-nitro-N-(pyridyl)benzamide (BA). Downregulation of PPAR[gamma] with RNA interference approaches had no effect on HCV replication in Huh-7 cells, whereas PPAR[alpha] downregulation inhibited HCV replication. Fluorescence and coherent anti-Stokes Raman scattering (CARS) microscopy demonstrate a clear buildup of lipids upon treatment with BA. These observations are consistent with the misregulation of lipid metabolism, phospholipid secretion, cholesterol catabolism, and triglyceride clearance events associated with the inhibition of PPAR[alpha]. The inhibition of HCV replication by BA may result from disrupting lipidation of host proteins associated with the HCV replication complex or, more generally, by disrupting the membranous web where HCV replicates.NRC publication: Ye

    Congenital lactic acidosis, cerebral cysts and pulmonary hypertension in an infant with FOXRED1 related complex 1 deficiency

    No full text
    Mitochondrial complex I is encoded by 38 nuclear-encoded and 7 mitochondrial-encoded genes. FOXRED1 is one of the 13 additional nuclear genes known as assembly factors. So far, four patients have been described with complex I deficiency caused by autosomal recessive mutations in FOXRED1.Here, we report the fifth patient with FOXRED1 related complex 1 deficiency presenting with prenatal onset of bilateral periventricular cysts, congenital lactic acidosis, and persistent life-limiting pulmonary hypertension. Whole exome sequencing identified a compound heterozygosity for a known pathogenic variant (c.612_615dupAGTG; p.A206SfsX15) (paternal) and a likely pathogenic variant (c.874G>A; p.Gly292Arg) (maternal). Deficiency of complex I was demonstrated by the absence of complex I on Blue Native Gel Electrophoresis and by a significantly reduced complex I enzyme activity in the patient's fibroblasts.Compared with the previous known FOXRED1 cases, unique clinical features observed in our patient include bilateral periventricular cysts and severe pulmonary hypertension. Whole exome sequencing was instrumental in recognizing the underlying gene defect in this patient

    Congenital lactic acidosis, cerebral cysts and pulmonary hypertension in an infant with FOXRED1 related complex I deficiency

    No full text
    Mitochondrial complex I is encoded by 38 nuclear-encoded and 7 mitochondrial-encoded genes. FOXRED1 is one of the 13 additional nuclear genes known as assembly factors. So far, four patients have been described with complex I deficiency caused by autosomal recessive mutations in FOXRED1.Here, we report the fifth patient with FOXRED1 related complex 1 deficiency presenting with prenatal onset of bilateral periventricular cysts, congenital lactic acidosis, and persistent life-limiting pulmonary hypertension. Whole exome sequencing identified a compound heterozygosity for a known pathogenic variant (c.612_615dupAGTG; p.A206SfsX15) (paternal) and a likely pathogenic variant (c.874G > A; p.Gly292Arg) (maternal). Deficiency of complex I was demonstrated by the absence of complex I on Blue Native Gel Electrophoresis and by a significantly reduced complex I enzyme activity in the patient's fibroblasts.Compared with the previous known FOXRED1 cases, unique clinical features observed in our patient include bilateral periventricular cysts and severe pulmonary hypertension. Whole exome sequencing was instrumental in recognizing the underlying gene defect in this patient

    The Expression of IL-1β Correlates with the Expression of Galectin-3 in the Tissue at the Maternal–Fetal Interface during the Term and Preterm Labor

    No full text
    The inflammatory processes that occur at the maternal–fetal interface are considered one of the factors that are responsible for preterm birth. The pro-inflammatory roles of the Gal-3-induced activation of NLRP3 inflammasome and the consecutive production of IL-1β have been described in several acute and chronic inflammatory diseases, but the role of this inflammatory axis in parturition has not been studied. The aim of this study was to analyze the protein expression of Gal-3, NLRP3, and IL-1β in the decidua, villi, and fetal membranes, and to analyze their mutual correlation and correlation with the clinical parameters of inflammation in preterm birth (PTB) and term birth (TB). The study included 40 women that underwent a preterm birth (gestational age of 25.0–36.6) and histological chorioamnionitis (PTB) and control subjects, 22 women that underwent a term birth (gestational age of 37.0–41.6) without histological chorioamnionitis (TB). An analysis of the tissue sections that were stained with anti- Gal-3, -NLRP3, and -IL-1β antibodies was assessed by three independent investigators. The expression levels of Gal-3 and IL-1β were significantly higher (p p = 0.008), villi (R = 0.301; p = 0.042) and the fetal membranes (R = 0.428; p = 0.002) in both of the groups, PTB and TB. In addition, the expression of Gal-3 and IL-1β in decidua and the fetal membranes was in correlation with the parameters of inflammation in the maternal and fetal blood (C-reactive protein, leukocyte number, and fibrinogen). The strong correlation between the expression of Gal-3 and IL-1β in the placental and fetal tissues during labor indicates that Gal-3 may participate in the regulation of the inflammatory processes in the placenta, leading to increased production of IL-1β, a cytokine that plays the main role in both term and preterm birth

    Structural insight into mammalian sialyltransferases

    No full text
    Mammalian cell surfaces are modified by complex arrays of glycoproteins, glycolipids and polysaccharides, many of which terminate in sialic acid and have central roles in essential processes including cell recognition, adhesion and immunogenicity. Sialylation of glycoconjugates is performed by a set of sequencerelated enzymes known as sialyltransferases (STs). Here we present the crystal structure of a mammalian ST, porcine ST3Gal-I, providing a structural basis for understanding the mechanism and specificity of these enzymes and for the design of selective inhibitors.Peer reviewed: YesNRC publication: Ye
    corecore