25 research outputs found

    Connectivity differences between Gulf War Illness (GWI) phenotypes during a test of attention

    Get PDF
    One quarter of veterans returning from the 1990–1991 Persian Gulf War have developed Gulf War Illness (GWI) with chronic pain, fatigue, cognitive and gastrointestinal dysfunction. Exertion leads to characteristic, delayed onset exacerbations that are not relieved by sleep. We have modeled exertional exhaustion by comparing magnetic resonance images from before and after submaximal exercise. One third of the 27 GWI participants had brain stem atrophy and developed postural tachycardia after exercise (START: Stress Test Activated Reversible Tachycardia). The remainder activated basal ganglia and anterior insulae during a cognitive task (STOPP: Stress Test Originated Phantom Perception). Here, the role of attention in cognitive dysfunction was assessed by seed region correlations during a simple 0-back stimulus matching task (“see a letter, push a button”) performed before exercise. Analysis was analogous to resting state, but different from psychophysiological interactions (PPI). The patterns of correlations between nodes in task and default networks were significantly different for START (n = 9), STOPP (n = 18) and control (n = 8) subjects. Edges shared by the 3 groups may represent co-activation caused by the 0-back task. Controls had a task network of right dorsolateral and left ventrolateral prefrontal cortex, dorsal anterior cingulate cortex, posterior insulae and frontal eye fields (dorsal attention network). START had a large task module centered on the dorsal anterior cingulate cortex with direct links to basal ganglia, anterior insulae, and right dorsolateral prefrontal cortex nodes, and through dorsal attention network (intraparietal sulci and frontal eye fields) nodes to a default module. STOPP had 2 task submodules of basal ganglia–anterior insulae, and dorsolateral prefrontal executive control regions. Dorsal attention and posterior insulae nodes were embedded in the default module and were distant from the task networks. These three unique connectivity patterns during an attention task support the concept of Gulf War Disease with recognizable, objective patterns of cognitive dysfunction

    Morphological responses of three contrasting Soybean (Glycine max (L.) Merrill) genotypes under different levels of salinity stress in the coastal region of Bangladesh

    Get PDF
    Soil salinity, a global environmental issue, inhibits plant development and production. Soybean is an economically important legume crop whose yield and quality are highly affected by excessive levels of salt in the root zone. A factorial experiment was conducted in a net house from October 2019 to January 2020 to evaluate the performance of three distinct soybean genotypes under varying levels of salinity stress. The experiment followed a completely randomized design (CRD) with three replications. Three soybean cultivars, namely BINA Soybean 1, BINA Soybean 2, and BINA Soybean 4 were used in this experiment. The soil salinity treatments were 0 mM NaCl, 50 mM NaCl, 100 mM NaCl, 150 mM NaCl, and 200 mM NaCl. The electrical conductivity (EC) of the soil sample was 0.91dS/m. Six seeds were sown 3 cm deep in each pot. A total of 45 pots were used in this experiment. The performance of each variety was evaluated based on its germination percentage, time of germination, no. of branches/plant, no. of leaves/plant, no. of flowers/plant, plant height (cm), no. of pods/plant, pod length (cm), seeds/pod, and root length (cm). Based on the results obtained from this research trial, it can be inferred that the BINA Soybean 2 variety along with 0 mM NaCl, 50 mM NaCl, and 100 mM NaCl treatments exhibited superior performance in all parameters compared to the other varieties. This study provides clear evidence that the soybean, particularly the BINA Soybean 2 variety, holds significant promise as a crop suitable for coastal regions. Furthermore, it suggests that the cultivation of soybeans in such areas could potentially enhance agricultural productivity, particularly in the presence of mild saline conditions. Nevertheless, it exhibits limited growth potential in environments with elevated salinity levels

    Increased brain white matter axial diffusivity associated with fatigue, pain and hyperalgesia in Gulf War illness

    Get PDF
    Background Gulf War exposures in 1990 and 1991 have caused 25% to 30% of deployed personnel to develop a syndrome of chronic fatigue, pain, hyperalgesia, cognitive and affective dysfunction. Methods Gulf War veterans (n = 31) and sedentary veteran and civilian controls (n = 20) completed fMRI scans for diffusion tensor imaging. A combination of dolorimetry, subjective reports of pain and fatigue were correlated to white matter diffusivity properties to identify tracts associated with symptom constructs. Results Gulf War Illness subjects had significantly correlated fatigue, pain, hyperalgesia, and increased axial diffusivity in the right inferior fronto-occipital fasciculus. ROC generated thresholds and subsequent binary regression analysis predicted CMI classification based upon axial diffusivity in the right inferior fronto-occipital fasciculus. These correlates were absent for controls in dichotomous regression analysis. Conclusion The right inferior fronto-occipital fasciculus may be a potential biomarker for Gulf War Illness. This tract links cortical regions involved in fatigue, pain, emotional and reward processing, and the right ventral attention network in cognition. The axonal neuropathological mechanism(s) explaining increased axial diffusivity may account for the most prominent symptoms of Gulf War Illness

    Increased brain white matter axial diffusivity associated with fatigue, pain and hyperalgesia in Gulf War illness. PLoS One

    Get PDF
    Abstract Background: Gulf War exposures in 1990 and 1991 have caused 25% to 30% of deployed personnel to develop a syndrome of chronic fatigue, pain, hyperalgesia, cognitive and affective dysfunction

    Administer and collect medical questionnaires with Google documents: a simple, safe, and free system

    No full text
    Aim: Questionnaires are an invaluable resource for clinical trials. They serve to estimate disease burden and clinical parameters associated with a particular study. However, current researchers are tackling budget constraints, loss of funding opportunities, and rise of research associated fees. We aimed at exploring alternative avenues taking advantage of the free Google docs software for questionnaire administration. This presents an opportunity to reduce costs while simultaneously increasing efficiency and data fidelity. Material and Methods: Google documents were used as a platform to create online questionnaires that were automatically hosted via a unique URL. Password protected access to the URL link and a unique study ID gave patients around the clock access from anywhere in the world. Unique study ID ensured confidentially of all self-reported data. Patient responses were secured using a “Cloud” database where the data was automatically sorted, scaled and scored by custom Excel formulas. Researchers downloaded real-time questionnaire responses in multiple formats (e.g. excel) which was then analyzed with a statistical software of choice. Results: This simple workflow provided instant questionnaire scores that eliminated the use for paper-based responses and subsequent manual entry of data. Ease of access to online questionnaires provided convenience to patients leading to better response rates and increase in data fidelity. The system also allowed for real time monitoring of patient’s progress on completing questionnaires. Online questionnaires had 100% completion rate compared to paper-based questionnaires. Conclusions: Google docs can serve as an efficient and free platform to administer questionnaires to a clinical population without sacrificing quality, security, and fidelity of data

    Characterizing “fibrofog”: Subjective appraisal, objective performance, and task-related brain activity during a working memory task

    Get PDF
    The subjective experience of cognitive dysfunction (“fibrofog”) is common in fibromyalgia. This study investigated the relation between subjective appraisal of cognitive function, objective cognitive task performance, and brain activity during a cognitive task using functional magnetic resonance imaging (fMRI). Sixteen fibromyalgia patients and 13 healthy pain-free controls completed a battery of questionnaires, including the Multiple Ability Self-Report Questionnaire (MASQ), a measure of self-perceived cognitive difficulties. Participants were evaluated for working memory performance using a modified N-back working memory task while undergoing Blood Oxygen Level Dependent (BOLD) fMRI measurements. Fibromyalgia patients and controls did not differ in working memory performance. Subjective appraisal of cognitive function was associated with better performance (accuracy) on the working memory task in healthy controls but not in fibromyalgia patients. In fibromyalgia patients, increased perceived cognitive difficulty was positively correlated with the severity of their symptoms. BOLD response during the working memory task did not differ between the groups. BOLD response correlated with task accuracy in control subjects but not in fibromyalgia patients. Increased subjective cognitive impairment correlated with decreased BOLD response in both groups but in different anatomic regions. In conclusion, “fibrofog” appears to be better characterized by subjective rather than objective impairment. Neurologic correlates of this subjective experience of impairment might be separate from those involved in the performance of cognitive tasks

    Connectivity differences between Gulf War Illness (GWI) phenotypes during a test of attention

    No full text
    One quarter of veterans returning from the 1990–1991 Persian Gulf War have developed Gulf War Illness (GWI) with chronic pain, fatigue, cognitive and gastrointestinal dysfunction. Exertion leads to characteristic, delayed onset exacerbations that are not relieved by sleep. We have modeled exertional exhaustion by comparing magnetic resonance images from before and after submaximal exercise. One third of the 27 GWI participants had brain stem atrophy and developed postural tachycardia after exercise (START: Stress Test Activated Reversible Tachycardia). The remainder activated basal ganglia and anterior insulae during a cognitive task (STOPP: Stress Test Originated Phantom Perception). Here, the role of attention in cognitive dysfunction was assessed by seed region correlations during a simple 0-back stimulus matching task (“see a letter, push a button”) performed before exercise. Analysis was analogous to resting state, but different from psychophysiological interactions (PPI). The patterns of correlations between nodes in task and default networks were significantly different for START (n = 9), STOPP (n = 18) and control (n = 8) subjects. Edges shared by the 3 groups may represent co-activation caused by the 0-back task. Controls had a task network of right dorsolateral and left ventrolateral prefrontal cortex, dorsal anterior cingulate cortex, posterior insulae and frontal eye fields (dorsal attention network). START had a large task module centered on the dorsal anterior cingulate cortex with direct links to basal ganglia, anterior insulae, and right dorsolateral prefrontal cortex nodes, and through dorsal attention network (intraparietal sulci and frontal eye fields) nodes to a default module. STOPP had 2 task submodules of basal ganglia–anterior insulae, and dorsolateral prefrontal executive control regions. Dorsal attention and posterior insulae nodes were embedded in the default module and were distant from the task networks. These three unique connectivity patterns during an attention task support the concept of Gulf War Disease with recognizable, objective patterns of cognitive dysfunction

    Connectivity differences between Gulf War Illness (GWI) phenotypes during a test of attention.

    No full text
    One quarter of veterans returning from the 1990-1991 Persian Gulf War have developed Gulf War Illness (GWI) with chronic pain, fatigue, cognitive and gastrointestinal dysfunction. Exertion leads to characteristic, delayed onset exacerbations that are not relieved by sleep. We have modeled exertional exhaustion by comparing magnetic resonance images from before and after submaximal exercise. One third of the 27 GWI participants had brain stem atrophy and developed postural tachycardia after exercise (START: Stress Test Activated Reversible Tachycardia). The remainder activated basal ganglia and anterior insulae during a cognitive task (STOPP: Stress Test Originated Phantom Perception). Here, the role of attention in cognitive dysfunction was assessed by seed region correlations during a simple 0-back stimulus matching task ("see a letter, push a button") performed before exercise. Analysis was analogous to resting state, but different from psychophysiological interactions (PPI). The patterns of correlations between nodes in task and default networks were significantly different for START (n = 9), STOPP (n = 18) and control (n = 8) subjects. Edges shared by the 3 groups may represent co-activation caused by the 0-back task. Controls had a task network of right dorsolateral and left ventrolateral prefrontal cortex, dorsal anterior cingulate cortex, posterior insulae and frontal eye fields (dorsal attention network). START had a large task module centered on the dorsal anterior cingulate cortex with direct links to basal ganglia, anterior insulae, and right dorsolateral prefrontal cortex nodes, and through dorsal attention network (intraparietal sulci and frontal eye fields) nodes to a default module. STOPP had 2 task submodules of basal ganglia-anterior insulae, and dorsolateral prefrontal executive control regions. Dorsal attention and posterior insulae nodes were embedded in the default module and were distant from the task networks. These three unique connectivity patterns during an attention task support the concept of Gulf War Disease with recognizable, objective patterns of cognitive dysfunction

    Exercise challenge alters Default Mode Network dynamics in Gulf War Illness

    No full text
    Abstract Background Gulf War Illness (GWI) affects 30% of veterans from the 1991 Gulf War and has no known cause. Everyday symptoms include pain, fatigue, migraines, and dyscognition. A striking syndromic feature is post-exertional malaise (PEM). This is recognized as an exacerbation of everyday symptoms following a physically stressful or cognitively demanding activity. The underlying mechanism of PEM is unknown. We previously reported a novel paradigm that possibly captured evidence of PEM by utilizing fMRI scans taken before and after sub-maximal exercises. We hypothesized that A) exercise would be a sufficient physically stressful activity to induce PEM and B) Comparison of brain activity before and after exercise would provide evidence of PEM’s effect on cognition. We reported two-exercise induced GWI phenotypes with distinct changes in brain activation patterns during the completion of a 2-back working memory task (also known as two-back > zero-back). Results Here we report unanticipated findings from the reverse contrast (zero-back > two-back), which allowed for the identification of task-related deactivation patterns. Following exercise, patients developed a significant increase in deactivation patterns within the Default Mode Network (DMN) that was not seen in controls. The DMN is comprised of regions that are consistently down regulated during external goal-directed activities and is often altered within many neurological disease states. Conclusions Exercise-induced alterations within the DMN provides novel evidence of GWI pathophysiology. More broadly, results suggest that task-related deactivation patterns may have biomarker potential in Gulf War Illness
    corecore