810 research outputs found

    Exact static solutions in four dimensional Einstein-Maxwell-Dilaton gravity

    Get PDF
    Classes of exact static solutions in four-dimensional Einstein-Maxwell-Dilaton gravity are found. Besides of the well-known solutions previously found in the literature, new solutions are presented.It's shown that spherically symmetric solutions, except the case of charged dilaton black hole, represent globally naked strong curvature singularities.Comment: 8 pages, late

    Variability of signal to noise ratio and the network analysis of gravitational wave burst signals

    Full text link
    The detection and estimation of gravitational wave burst signals, with {\em a priori} unknown polarization waveforms, requires the use of data from a network of detectors. For determining how the data from such a network should be combined, approaches based on the maximum likelihood principle have proven to be useful. The most straightforward among these uses the global maximum of the likelihood over the space of all waveforms as both the detection statistic and signal estimator. However, in the case of burst signals, a physically counterintuitive situation results: for two aligned detectors the statistic includes the cross-correlation of the detector outputs, as expected, but this term disappears even for an infinitesimal misalignment. This {\em two detector paradox} arises from the inclusion of improbable waveforms in the solution space of maximization. Such waveforms produce widely different responses in detectors that are closely aligned. We show that by penalizing waveforms that exhibit large signal-to-noise ratio (snr) variability, as the corresponding source is moved on the sky, a physically motivated restriction is obtained that (i) resolves the two detector paradox and (ii) leads to a better performing statistic than the global maximum of the likelihood. Waveforms with high snr variability turn out to be precisely the ones that are improbable in the sense mentioned above. The coherent network analysis method thus obtained can be applied to any network, irrespective of the number or the mutual alignment of detectors.Comment: 13 pages, 6 figure

    Dynamic Resonance of Light in Fabry-Perot Cavities

    Get PDF
    The dynamics of light in Fabry-Perot cavities with varying length and input laser frequency are analyzed and the exact condition for resonance is derived. This dynamic resonance depends on the light transit time in the cavity and the Doppler effect due to the mirror motions. The response of the cavity to length variations is very different from its response to laser frequency variations. If the frequency of these variations is equal to multiples of the cavity free spectral range, the response to length is maximized while the response to the laser frequency is zero. Implications of these results for the detection of gravitational waves using kilometer-scale Fabry-Perot cavities are discussed

    Cyclostationary shot noise in mesoscopic measurements

    Get PDF
    We discuss theoretically a setup where a time-dependent current consisting of a DC bias and two sinusoidal harmonics is driven through a sample. If the sample exhibits current-dependent shot noise, the down-converted noise power spectrum varies depending on the local-oscillator phase of the mixer. The theory of this phase-dependent noise is applied to discuss the measurement of the radio-frequency single-electron transistor. We also show that this effect can be used to measure the shot noise accurately even in nonlinear high-impedance samples.Comment: 3 pages, 2 figure

    Novel method for photovoltaic energy conversion using surface acoustic waves in piezoelectric semiconductors

    Full text link
    This paper presents a novel principle for photovoltaic (PV) energy conversion using surface acoustic waves (SAWs) in piezoelectric semiconductors. A SAW produces a periodically modulated electric potential, which spatially segregates photoexcited electrons and holes to the maxima and minima of the SAW potential. The moving SAW collectively transports the carriers with the speed of sound to the electrodes made of different materials, which extract electrons and holes separately and generate dc output. The proposed active design is expected to have higher efficiency than passive designs of the existing PV devices and to produce enough energy to sustain the SAW.Comment: v.3 4 pages, 3 figures, submitted to proceedings of ECRYS-2011 to be published in Physica

    Majorana fermions in pinned vortices

    Full text link
    Exploiting the peculiar properties of proximity-induced superconductivity on the surface of a topological insulator, we propose a device which allows the creation of a Majorana fermion inside the core of a pinned Abrikosov vortex. The relevant Bogolyubov-de Gennes equations are studied analytically. We demonstrate that in this system the zero-energy Majorana fermion state is separated by a large energy gap, of the order of the zero-temperature superconducting gap Δ\Delta, from a band of single-particle non-topological excitations. In other words, the Majorana fermion remains robust against thermal fluctuations, as long as the temperature remains substantially lower than the critical superconducting temperature. Experimentally, the Majorana state may be detected by measuring the tunneling differential conductance at the center of the Abrikosov vortex. In such an experiment, the Majorana state manifests itself as a zero-bias anomaly separated by a gap, of the order of Δ\Delta, from the contributions of the nontopological excitations.Comment: 9 pages, 2 eps figures, new references are added, several typos are correcte

    Instabilities of the AA-stacked graphene bilayer

    Full text link
    Tight-binding calculations predict that the AA-stacked graphene bilayer has one electron and one hole conducting bands, and that the Fermi surfaces of these bands coincide. We demonstrate that as a result of this degeneracy, the bilayer becomes unstable with respect to a set of spontaneous symmetry violations. Which of the symmetries is broken depends on the microscopic details of the system. We find that antiferromagnetism is the more stable order parameter. This order is stabilized by the strong on-site Coulomb repulsion. For an on-site repulsion energy typical for graphene systems, the antiferromagnetic gap can exist up to room temperatures.Comment: 4 pages, 2 eps figure, submitted to Phys. Rev. Let

    Robust Bayesian detection of unmodelled bursts

    Get PDF
    A Bayesian treatment of the problem of detecting an unmodelled gravitational wave burst with a global network of gravitational wave observatories reveals that several previously proposed statistics have implicit biases that render them sub-optimal for realistic signal populations.Comment: 9 pages, 1 figure, submitted to CQG Amaldi proceedings special issu
    • …
    corecore